fbpx
Connect with us

Astrofizik

​Işık Hızından Daha Hızlı 4 Şey

Published

on

Evrenin başlangıcından beri var olmasına rağmen bilim insanlarını şaşırtmaya devam eden ışık, neredeyse bilinen tüm şeylerden daha hızlıdır. Sadece bir saniyede 299.792.458 m yol katedebilen (boşlukta, ilerlediği konuma göre hızı farklılık gösterebiliyor) ışık, sahip olduğumuz en gelişmiş araçlardan çok daha hızlı olmasına rağmen evrenin büyüklüğünde göz önüne alındığı zaman yavaş kalıyor. Bu nedenle ışıktan daha hızlı olabilecek şeyleri araştıran bilim insanları, bazı teorilere göre geçilmesi imkansız olan ışık hızını geçmeyi başarmış veya başarabilecek olan şeyler keşfetmişler.
Big Bang Evrenin başlangıcı olarak kabul edilen Big Bang, uzayın ışıktan çok daha hızlı bir şekilde genişlemesini sağlamıştır. Bazı bilim insanları bu genişlemenin ‘nothing can go faster than light’ (hiçbir şey ışıktan hızlı gidemez) sözüyle uyumlu olduğunu söyler. Big Bang ile genişleyen uzay, kütleye veya hacme sahip olmadığı için ünlü cümlede yer alan ‘nothing’dir (hiçbir şey). Bundan ötürü ışık hızını hiçbir şeyin aşamayacağını belirten teoriler Big Bang ile ters düşmez.

Işığın Görüntüsü  Bu çok ilginç bir tartışma konusudur. Bazı bilim insanları, ışığın görüntüsünün ışıktan çok daha hızlı hareket ettiği durumların olabileceğini söyler. Bu duruma örnek vermek adına elinde lazer olan bir adam ve A, B isimli 2 farklı gezegen hayal edelim. Adamın bulunduğu yer, A gezegeni ve B gezegeni birbirinden 100 ışık yılı uzaklıkta olsun. Son olarak da A ve B gezegenleri arasında dev bir platform olduğunu düşünelim (lazeri belli eden türden bir platform). Sabit bir konumda bulunan ve hiçbir şeyden etkilenmeyen lazerli adam, A ve B gezegenlerine lazeriyle ışık tutsun. İlk olarak A gezegenine ışık tutan adam, bir süre sonra B gezegenine lazer tutmak ister ve iki gezegenin arasında bulunan platform üzerinden lazerin ışığını yürüterek lazerini B gezegenine kaydırır. İşte olay bu noktada ilginçleşir. Sıradan bir bilek hareketiyle lazerini A gezegeninden B gezegenine, yani 100 ışık yılı uzağa kaydıran adam ışık hızını algısal olarak aşmayı başarmıştır. Adam, ışıktan daha hızlı hareket ettiği düşünülen ‘ışık görüntüsü’ sayesinde lazerinin anında B gezegenine vardığını görür ancak bu olay aslında sadece algılarında böyledir. Işığı oluşturan fotonlar ışık hızında ilerlerler. Lazer ne kadar hızlı şekilde, ne kadar çok döndürülürse döndürülsün, fotonların düştüğü konumlar lazerin A gezegeninden çıkarak platfomdan geçmesini ve B gezegenine ulaşmasını gösterecektir. A ve B gezegenlerinde bulunan gözlemciler de lazerin en fazla ışık hızında ilerlediğini görebilirler ancak ışık hızı asla aşılmaz.. Bazı bilim insanları ışık görüntüsünün de ‘nothing’ (hiçbir şey) olarak algılanması gerektiğini savunurlar çünkü ışık görüntüsü ne enerji, ne veri, ne de net bir bilgi taşıyabilir. Tüm bunlara rağmen ışık hızını aşmayı başarmak, bu sıralamada yer almak için yeterli.  (Videonun ilk 1 dakikasında ışık görüntüsü Ay üzerinden örneklenmiş)
Kuantum Dolanıklığı  Albert Einstein’ın ‘ürkütücü’ olarak nitelendirdiği kuantum dolanıklık teorisi, birbiriyle eşleşmiş olan iki farklı parçacığın birbirine bağlı şekilde hareket etmesidir. Örneğin ilk olarak iki elektronu yan yana getirelim. Birbirlerini etkileyecek olan elektronlar, bir süre sonra uyumlu bir şekilde hareket etmeye başlayacaklardır. Bu noktadan sonra elektronlardan birisini bulunduğumuz konumun milyonlarca ışık yılı uzağına yerleştirelim ve eşleşmiş olan elektronu titreştirelim. Titreşen elektronun eşi, çok uzakta olmasına rağmen gerçekleşen titreşim hareketini anında fark edecektir ve titreşim hareketinin tam tersini uygulayacaktır. Eşi aşağı doğru yöneliyorsa yukarı, sağa doğru yöneliyorsa sola, ileri doğru yöneliyorsa arkaya doğru hareket eden elektron, ışık hızından çok daha hızlı (bazı bilim insanları 10.000 kat daha hızlı olduğundan bahsediyor) şeylerin olduğunun en büyük kanıtlarından birisidir.
Solucan Deliği Uzay-zaman bütünlüğündeki kısa yol olarak adlandırabileceğimiz solucan delikleri, ışığın milyonlarca senede katettiği yolu sadece birkaç saniyeye indirgeyebilir. Bu nedenle belki solucan deliğinin değil ama solucan deliğinden geçen her şeyin ışıktan daha hızlı olduğunu söyleyebiliriz.

Astrofizik

Karanlık Madde Nedir

Published

on

Karanlık maddenin varlığı ortalama 70 yıl kadar önce İsviçreli bir gökbilimci olan Fred Zwicky tarafından fark edilmiş ve o günden sonra da sürekli olarak doğrulanmıştır. Şimdi Fred Zwicky’nin izlemiş olduğu yöntemi bir örnek ile anlamaya çalışacak olursak; Ay, Dünya’nın üzerine düşmüyorsa ki bunu Newton’dan beri biliyoruz, bunun nedeni gezegenimizin çevresinde bir yörüngede olmasıdır. Dünyanın çevresindeki dönme hızı ona tam da onu gezegenimize doğru çeken kütle çekim kuvvetine karşı koymak için gereken merkezkaç kuvvetini sağlar. Eğer daha hızlı dönseydi uzay boşluğuna doğru sürüklenirdi ve biz de onu kaybederdik. Yine aynı şekilde Dünya daha büyük kütleli olsaydı Ay’ın da mevcut uzaklığında bu dengeyi koruyabilmek için daha hızlı dönmesi gerekecekti. Bu şekilde Ay ’ın yörünge hızından yola çıkarak Dünya’ nın kütlesini ölçebiliriz.

karanlik-madde-nedir

Bu yöntem Dünya’ nın yörünge hareketinden yola çıkarak da Güneş’ in kütlesini öğrenmemizi de sağlamaktadır. Yine bu aynı teknik galaksinin merkezi çevresindeki yıldızların yörüngesine de uygulanabilir. Mesela Güneş’ in Samanyolu’ nun merkezinin çevresindeki dönüşünü yaklaşık saniyede 200 km hızla 200 milyon yılda tamamlar. Fakat bu noktada karşımıza bir problem çıkar. Galaksinin, yıldızları merkezine doğru çeken görünür kütlesi yani yıldızlar, bulutsular vs. onları yörüngelerinde tutmak için yeterli değildir. Bu yörüngenin korunabilmesi için yıldızlar ile galaksinin ortası arasında yaklaşık 10 kat daha fazla madde bulunması gerekir.

Diğer bir deyişle, galakside teleskoplarımız ile gözlemlediğimiz yıldız ve bulutsulardan başka bir şey olmasaydı, yıldızlar hızla uzaklaşıp galaksiler arası boşluklara doğru giderlerdi. Aynı sorun benzer çalışmaların yapıldığı diğer galaksilerde de karşımıza çıkmaktadır. Galaksilerde başka bir bileşen daha olmalıdır, bu bileşen görünmezdir yani foton yaymaz, yıldız ve bulutsuların toplamından yaklaşık 10 kat daha büyük kütlelidir ve alışık olduğumuz madde gibi çevresindeki cisimleri kendine çekme özelliğine sahiptir. İşte buna Karanlık Madde denilmektedir.
Yıldızların hareketlerine değil de galaksi yığınları içinde galaksilerin kendilerinin hareketlerine yönelik başka pek çok gözlem, nitelik bakımından görünmez maddenin varlığı ve nicelik bakımından ( görünür maddenin yaklaşık 10 katı büyüklüğünde ) bizi aynı sonuca götürecektir.

Editör / Yazar: İsa EKİCİ

Kaynak: https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy

Continue Reading

Astrofizik

Karanlık Enerjinin Zayıflığı Süpernovaların Hepimizi Öldürmüyor Olmasının Nedeni Olabilir

Published

on

Evrende neden var olduğumuz sorusu hala gizemini koruyor. Bilimin ve felsefenin temel sorularından biri olan varlık bilinmezine farklı bir bakış açısı da insanlığın hala yaşamaya devam ediyor olmasının neye bağlı olduğu sorusunda kilitleniyor. Şimdi bilim insanları tarafından insanlığın süpernova patlamaları esnasında neden yutulmadığını ve varlığını sürdürebildiğini açıklamada yeni bir bilgi keşfetti. Bilim insanlığın süpernova patlamaları sırasında yok olmamasının sebebi olarak karanlık enerjinin şaşırtıcı ölçüde zayıf olmasını gösteriyor. Karanlık enerji evrenin genişlemesini hızlandıran gizemli bir güçtür. Bu alanda yeni bir çalışmaya imza atan Tokyo Üniversitesi’de görevli bir astronom olan Tomonori Totani, “Bu, daha önce çok farklı alanlar olduğu düşünülen [karanlık enerji] ve astrobiyoloji arasında yeni bir bağlantı yaratıyor” diyor. Çoğu insan, karanlık enerjiyi (özellikle gökadaları birbirinden ayıran, her şeyi sağlayan güç) – zayıf olarak düşünmez.

Fakat kuantum mekaniğinin argümanlarına ve Albert Einstein ‘ ın yerçekimi denklemlerine dayanarak, bilim insanları karanlık enerjinin, gerçekte olduğundan en az 120 katı daha güçlü olması gerektiğini düşünüyor. Eğer karanlık enerji o kadar güçlü olsaydı, galaksilerin, yıldızların ve canlı varlıkların oluşumunu engelleyerek, erken evrende çabucak ayrışırdı. Bu, bazı bilim insanlarının evrende bulunan fizik yasalarının yaşamı şekillendirmek için ince şekilde ayarlanmış olduğunu söylediği antropik yasayı göz önüne almasına sebebiyet veriyor. Totani, meslektaşlarıyla birlikte, daha önce farklı karanlık enerji güçleri için evrenin evrimini simüle etmişti.  Bilim insanı bu modelleri, canlıları barındırabilecek galaksiler oluşturabilecek modellerle sınırlıyordu.

Bu modellemelerde karanlık enerjinin gerçekte olduğundan 20 ila 50 kat daha büyük olması gerektiği sonucuna ulaşıldı.Sonuç olarak karanlık fiziğin gözlemlenen zayıflığını tam olarak açıklayamasalar da saf fiziğe dayanan argümanlar üzerinde büyük bir gelişme sağlandı. Yeni hesaplamalarında, araştırmacılar karanlık enerjinin kozmosumuzda olduğundan yaklaşık 50 kat daha güçlü olduğu modellere daha yakından baktı. Galaksiler böyle bir evrende ortaya çıkabilirler.

Ancak bu durum sadece en erken dönemlerde, gizemli madde tam güce başlamadan ve her şeyi ayrı tutmadan önce olabilir. İlk evren oldukça yoğun olduğu için, şekillenmeyi başaran galaksiler, Samanyolu’ndaki gibi gökadalardan 10 kat daha yoğun yıldızlarla dolu olacaktır. Bu yoğun galaksiler, ortalama yıldız komşularına çok daha yakın olurlar. Kısa yaşamlar yaşayan ve ardından kışkırtıcı süpernovalar olarak patlayan devasa yıldızlar, yakınlardaki gezegenlere ölümcül dozlarda radyasyon verirler, var olan herhangi bir yaşamı sterilize ederler ve hiç gözlemci bırakmazlar.

Araştırmacılar, daha önce düşünülmemiş olan bu etkinin evreni hayata elverişli hale getireceğini hesapladılar. Bu nedenle, karanlık enerjinin gözlenen zayıflığı, neden burada olduğumuzun sebebi olarak tanımlandı. Totani, gelecekteki astrobiyologların hayatın galaksinin en yoğun bölgelerinde çok daha nadir olduğunu bulması halinde teorisinin daha da güçleneceğini söylüyor.

Kaynak: http://www.sciencemag.org/news/2018/05/dark-energy-s-weakness-may-be-why-supernovae-didn-t-kill-us-all

Continue Reading

Astrofizik

Karanlık Madde, Sıradan Madde ile Nasıl Etkileşir?

Published

on

Kaliforniya Üniversitesi’nden fizikçi Hai-BoYu gibi bir bilim adamlarından oluşan uluslararası bir ekip, karanlık maddenin normal madde ile nasıl etkileşime girebileceğine dair koşulları araştırdı. Bu çalışma karanlık madde parçacığını tanımlamaya ve Dünya’da tespit etmeye yardımcı olabilecek. Karanlık madde – uzayda olmayan boşluklu malzeme – evrendeki maddelerin yüzde 85’ini oluşturmaktadır. Normal maddenin aksine, karanlık madde ışığı algılamaz, yansıtmaz veya yayarak algılamayı zorlaştırır.  Fizikçiler karanlık maddenin var olduğunu ve görünür madde üzerindeki yerçekimsel etkisinin olduğunu tespit etti. Ancak tespit edemedikleri durum karanlık maddenin sıradan madde ile nasıl bir etkileşime sahip olduğu. Karanlık maddenin doğrudan tespiti için yapılan araştırma, deneysel odak, WIMP’ler üzerinde ya da karanlık parçacıkları meydana getirdiği düşünülen hipotetik parçacıkların zayıf etkileşimli kütlesel parçacıkları üzerinde yapıldı. Yu’nun uluslararası araştırma ekibi, konuyla ilgili WIMP paradigmasına karşı çıkacak farklı bir teoriyi ortaya attı.

Ekip, kendisiyle etkileşime giren karanlık madde modeli veya galaktik dönme eğrilerinde gözlemlenen çeşitliliği açıklayabilen SIDM teorisi üzerinde duruyor.  İlk olarak 2000 yılında bir çift seçkin astrofizikçi tarafından önerilen SIDM, 2009’da başından beri hem parçacık fiziği hem de astrofizik topluluklarında popüler oldu.  SIDM kısmi olsa daYu ve arkadaşlarının yaptığı işlere yardımcı oldu. 2016 ve 2017 yıllarında Çin’de yapılan Pandax II deneyinde karanlık madde parçacıkları sıvılaştırılmış yüzeyle çarpıştırılınca iki eşzamanlı sinyal elde edildi. Bunlardan birisi fotonlar, diğeri ise elektronlardır.

Yu, PandaX-II’nin karanlık maddenin normal maddeyle “yani” proton ve nötronlarla etkileşime girdiğini varsaydı. Bu etkileşim yerçekimi etkileşiminin dışındadır. Sadece yerçekimi etkileşimi yeterli olmayacaktır. Araştırmacılar daha sonra bu etkileşimi tanımlayan bir sinyal aradı. Ek olarak, PandaX-II karanlık madde ve normal madde arasındaki etkileşimlere aracılık eden “aracı parçacık” ı, WIMP paradigmasında bulunan aracı parçacıktan çok daha az kütleye sahip olduğunu varsayıyor. Yu’nun, WIMP paradigması bu aracı parçacığın çok ağır olduğunu varsayıyor.  Yaklaşık olarak bir protonun kütlesinin 100 ila 1000 katı. Astrofizik gözlemlerde, tüm tahminlerini görmüyoruz.

Diğer taraftan, SIDM modelinin arabulucu parçacığın kütlesinden yaklaşık 0.001 katı büyüklükte olduğu varsayılıyor. Karanlık madde parçacığı, cüce gökadalardan galaksi kümelerine kadar olan astrofiziksel gözlemlerden çıkarılmıştır.Dünyanın en hassas doğrudan algılama deneylerinden biri olan PandaX-II, karanlık madde partikülü tespit edildiğinde SIDM modelini doğrulamak için kullanıldı. Parçacık fizikçilerinin karanlık maddeyi anlama girişimleri henüz laboratuvardaki karanlık madde için kesin kanıtlar sağlamıştır. Karanlık madde parçacıklarının sıradan maddeyle etkileşimi, modern fiziğin kutsal mezarlarından biridir ve karanlık maddenin temel parçacık özelliklerini anlamada en iyi umudu temsil etmektedir.Geçtiğimiz on yıl boyunca, SIDM’de bir dünya uzmanı olan Yu, karanlık maddenin parçacık özelliklerini astrofiziksel verilerden anlamanın yollarını arayarak parçacık fiziği ve kozmolojiyi bir araya getirme çabasına girişti. Bilim insanları karanlık maddenin etkileşimiyle ilgili verileri ve karanlık maddenin doğasını incelemeyi sürdüreceklerini açıkladı.

Kaynak: https://www.sciencedaily.com/releases/2018/07/180713093545.htm

Continue Reading

Öne Çıkanlar