fbpx
Bizi Takip Edin

Bilim

Beynin, konuşmayı nasıl kodladığıyla ilgili sırrı açığa çıktı

Yayınlandı

üzerinde

Stephen Hawking gibi tamamen felç olmuş insanlarla iletişim sağlayabilmek için kod çözme teknolojisi beyindeki sinyalleri konuşmaya çevirebiliyor. Stephen Hawking gibi insanlar ne söylemek istediklerini düşünebilirler ancak kaslarını hareket ettiremedikleri için konuşamazlar. İletişim kurmak için, bir kişinin kelimelerini bir defada hecelemek, kişinin gözünü veya yanak hareketlerini algılayan cihazlar kullanılabilir ancak bu süreç çok yavaş ve doğal değildir. Bilim insanları;  beyin, dil, damak, dudak ve gırtlağa gönderdiği komutları çözmek için “bir beyin makine ara yüzü (BMI)” geliştirerek bu felce uğramış veya “kilitlenmiş” bireylerin daha sezgisel iletişim kurmasını amaçlıyorlar. Bu sistemde kişinin söylemek istediklerini,  beyin makine ara yüzü (BMI) konuşmaya dönüştürür.

Northwestern Medicine ve Weinberg Sanat ve Bilim Üniversitesinde yapılan yeni araştırmalar, beynin konuşmayı nasıl kodladığıyla ilgili yeni verileri kullanarak, konuşmayı beyin-beyin makinesi ara yüzü ile gerçekleştirmeye çok yaklaştı. Bilim insanları, bu sistemde,  beyin hareket komutlarını kol ve el hareketlerine benzer bir şekilde kullanmayı başardı. Bunu gerçekleştirmek için araştırmacılar beynin iki bölümünden sinyaller kaydedip, bu sinyallerin temsil ettiği kodları deşifre ettiler. Farklı temsiller beynin iki farklı bölgesinde de ortaya çıkar. Northwestern Üniversitesi’nde nöroloji ve fizyoloji profesörü olan baş araştırmacı Dr. Marc Slutzky, “Bu keşif, BMI sistemlerinde daha iyi konuşma için kısa çözücüler oluşturmamıza yardımcı olabilir. Bu da bizi tekrar felçli olan insanlara yardım etme hedefimize yaklaştıracak” dedi. Bu keşif ayrıca, yetişkinlerde inme sonrası, çocuklarda konuşma apraksisi gibi diğer konuşma bozuklukları olan insanlara da yardımcı olabilir. Konuşma apraksisinde, bir birey konuşma kodlarını beyninden konuşulan dile çevirmekte zorluk çeker.

Kelimeler, beyninizden konuşmaya nasıl çevrilir?
Konuşma; dudaklar, dil, damak ve larinksin koordineli hareketleri ile üretilen fonem olarak adlandırılan bireysel seslerden oluşur ancak bilim insanları tam olarak, eklem hareketleri denilen bu hareketlerin beyin tarafından nasıl planlandığını bilmiyorlardı. Özellikle, serebral korteksin konuşma üretimini nasıl kontrol ettiği tam olarak anlaşılmamıştır ve beyinde jest temsili kanıtı gösterilmemiştir. Slutzky, “Beyin konuşma motor alanlarının, beyin motor alanlarını tutacak benzer bir organizasyona sahip olacağını varsaydık.” Dedi. “Precentral Korteks dudakların, dilin, damağın ve gırtlağın hareketlerini (jestlerini) temsil ederdi ve daha yüksek seviyedeki kortikal alanlar fonemleri daha fazla temsil ederdi. Tam olarak bulduğu şey bu. Slutzky, “Beynin konuşma üretmek için yardım eden iki bölümünü inceledik.” Dedi. Precentral korteks, fonemlerden daha büyük ölçüde jestleri ve daha yüksek seviyeli bir konuşma alanı olan inferior frontal korteks, hem sesleri hem de jestleri temsil eder.

Beyin sinyallerini çözmek için beyin cerrahisinde hastalarla sohbet etmek
Kuzeybatı bilim insanları, beyin tümörlerini tedavi etmek için beyin ameliyatı geçiren hastalarla elektrotlar kullanarak kortikal yüzeyden beyin sinyalleri kaydettiler. Hastalar ameliyat sırasında uyanık olmalıydı, bu yüzden araştırmacılar bir ekrandan kelimeleri okumalarını istedi. Ameliyattan sonra, bilim insanları, hastaların fonemler ve jestler ürettiği zamanları işaretledi. Daha sonra, her bir kortilksal alandan kaydedilen beyin sinyallerini, hangi fonemlerin ve jestlerin üretildiğini çözmek için kullandılar ve kod çözme doğruluğunu ölçtüler. Primerral kortekste beyin sinyalleri, fonemlere göre jestleri çözmede daha doğruydu; alt frontal kortekste bulunanlar ise hem fonem hem de jestleri çözmede eşit derecede iyiydi. Bu bilgi, dilbilimsel üretim modellerini desteklemiştir. Ayrıca bu beyin bölgelerinden gelen konuşmaların kodunu çözmek için beyin makine ara yüzleri tasarlamada mühendislere yardımcı olacaktır. Araştırmaların bir sonraki adımı, sadece jestleri deşifre etmekle kalmayacak, aynı zamanda şifrelenmiş jestleri sözcükler oluşturacak şekilde birleştirecek beyin makine ara yüzleri için bir algoritma geliştirecektir.
Kaynak: https://www.sciencedaily.com/releases/2018/09/180926140827.htm
Editör/Yazar: Gizem Şahin

Bilim

Çin’in ‘yapay güneşi’ 100 milyon derecelik ısı elde etti

Yayınlandı

üzerinde

Yazan

Çin’in ‘yapay güneş’ adını verdiği Süper İletken Kaynaşım Merkezi Tokamak (EAST) yapılan deneyde 100 milyon derecelik plazmadan oluşan ısıya ulaştı. Çin Bilimler Akademisi’ne bağlı Plazma Fizik Enstitüsü’nün web sitesinden yapılan açıklamada daha önce elde edilen 50 milyon derecelik ısı hacminden sonra, 100 milyon derecelik ısı hedefine de ulaşıldığı belirtildi. Jiangsu bölgesinde bulunan reaktörde nükleer füzyon ile üretilen ısının aynı zamanda temiz enerji olarak da kullanılması hedefleniyor. 1950’lerde Rus fizikçi Igor Yevgenyevich Tamm ve Andrei Sakharov tarafından bulunan Tokamak, plazmanın kapalı manyetik alan bölgesi içinde hapsedilmeye çalışıldığı bir plazma tutucu sistem olarak biliniyor.

Çin devlet televizyonuna göre Süper İletken Kaynaşım Merkezi Tokamak (EAST) Çin’in dördüncü nesil nükleer füzyon üreten santrali. Yapay güneş olarak adlandırılan bu santralin amacı, okyanuslarda bolca bulunan döteryum ve trityumu kullanarak güneşin içerisinde gerçekleşen nükleer füzyona benzer ısı elde etmek. Aynı reaktörde 2017 yılında yapılan deneyde 102 saniye boyunca ısı yayan 50 milyon derecelik ısı elde edilmişti.
Nükleer Füzyon Nedir?
Nükleer füzyonun çalışma prensibi, iki ayrı hidrojen gazını, döteryum ve tritium, yaklaşık 100 milyon derece ısıya çıkararak, işlem sonrası oluşan plazmadan enerji elde etmek üzerine olup, fosil yakıtlara göre çok daha fazla enerji üretmesi, karbon salınımı olmaması ve güvenlik riski oluşturmaması gibi avantajları vardır.

Culham Füzyon Enerjisi Merkezi’nin açıklamasına göre nükleer füzyonla elde edilen bir kilogram yakıttan elde edilecek enerji, 100 milyon kilogram fosil yakıttan elde edilen enerjiye eşdeğer. Günümüz teknolojisiyle bu kadar yüksek ısılara birkaç dakikadan uzun süre dayanabilecek çekirdekler üretilemediği için, bilim insanlarının önündeki sorun, Güneş’in sıcaklığının üç katına, bir güç kaynağı olarak kullanılabilmesine izin verecek kadar dayanabilecek bir çekirdek üretmek.
Kaynak: https://radiichina.com/chinas-artificial-sun-just-hit-100-million-degrees-celsius-212-million-degrees-fahrenheit/

Devamını Oku

Bilim

Bilim İnsanları Güneş Enerjisini 18 Yıla Kadar Saklayabilecek Sıvı Bir Yakıt Geliştirdi

Yayınlandı

üzerinde

Ne kadar bol ve yenilenebilir olursa olsun, güneş enerjisiyle ilgili hala büyük bir sorun bulunuyor. Güneşin ürettiği enerjiyi depolayabilecek ucuz ve verimli bir sistem bulunmuyor. Güneş enerjisi endüstrisinin uzun bir süredir takıldığı ve ilerleyemediği bu alanla ilgili geçtiğimiz yıl içerisinde farklı çözümler ortaya kondu. İsveç’teki bilim İnsanları güneş enerjisini 10 yıldan daha uzun bir süre depolayabilen özel bir sıvı geliştirdi. MIT’de güneş enerjisi üzerine çalışan mühendis Jeffrey Grossman yaptığı açıklamada, Bir güneş paneli şarj edilebilir batarya gibidir.

Ancak elektrik yerine güneş ışığını devreye sokar ve ısıyı almayı isterseniz, talep üzerine tetiklenmektedir” açıklamasında bulundu. Bulunan sıvı Chalmers University of Technology’deki bilim insanlarının bir yıldan fazla bir süredir geliştirmek için uğraştığı sıvı formundaki bir moleküldür. Bu molekül karbon, hidrojen ve azottan oluşmaktadır. Güneş ışığıyla tetiklendiğinde bu molekül olağan dışı bir şey yapmaktadır. Molekülün atomları arasındaki bağlar yeniden düzenlenir ve bir izomer olarak isimlendirilen, enerjinin yeni bir versiyonuna dönüşür.

Bir tuzağa yakalanan av gibi, güneşten gelen enerji de izomerin güçlü kimyasal bağları arasında yakalanır ve molekül oda sıcaklığına soğuduktan sonra bile orada kalır. Enerjiye ihtiyaç duyulduğunda – gece veya kış mevsiminde – sıvı, molekülü orijinal formuna geri döndüren ve ısı formunda enerji veren bir katalizörden çekilir. Chalmers Üniversitesi’nden nanomateryalist bilim insanı KasperMoth-Poulsen , “ Bu izomerdeki enerji 18 yıla kadar saklanabilir ” diyor. Üstelik enerji çıkarıldığında ve kullanılmaya başlandığında umulandan daha büyük bir sıcaklık artışı elde edilmektedir. Üniversite binasının çatısına yerleştirilen enerji sisteminin bir prototipi, yeni sıvıyı teste tabi tuttu ve araştırmacılara göre sonuçlar çok sayıda yatırımcının dikkatini çekti.

Yenilenebilir, emisyondan arındırılmış enerji cihazı merkezde bir borulu içbükey bir reflektörden oluşur ve bu da Güneş’i bir çeşit uydu çanağı gibi izler.Sistem dairesel bir şekilde çalışır. Şeffaf borularla pompalama yapılmasının ardından sıvı güneş ışığı tarafından ısıtılır, norbornadien molekülü ısı tutucu izomer tarafındankuadrisiklona dönüştürülür. Sıvı daha sonra minimum enerji kaybıyla oda sıcaklığında saklanır. Enerjiye ihtiyaç duyulduğunda, akışkan, molekülleri orijinal hallerine geri döndüren sıvıyı 63 derece ile ısıtan özel bir katalizörden süzülür.Her şey planlandığı gibi giderse, Moth-Poulsen teknolojinin 10 yıl içinde ticari kullanıma açık olabileceğini düşünüyor.
Kaynak: https://www.sciencealert.com/scientists-develop-liquid-that-sucks-up-sun-s-energy

Devamını Oku

Bilim

Bilim insanları kilogramın tanımını değiştirmek için toplanıyor: Sabit ağırlık yerine kuantum

Yayınlandı

üzerinde

Yazan

Metroloji alanında çalışan 57 ülkeden bilim insanları kilogramın tanımını değiştirmek için Paris’te toplanıyor. Bir kilogramın bir kilogram olduğunu nasıl biliyoruz bunu hiç düşündünüz mü? Nasıl oluyor da “1 kg” dünyanın her yerinde aynı ağırlığa denk geliyor? Cevabı Fransa’nın başkenti Paris’te ısısı ve basıncı kontrol altında tutulan üç seviyede mühürlü bir laboratuvarın içinde bulunuyor. Son birkaç yıldır kilogramı tanımlayan şey; aynı zamanda dünyanın en yuvarlak nesnesi olan ve 2,15 x 10^25 adet silikon 28 atomuna sahip mükemmel küre şeklindeki bir cisim. Sadece bu kürenin yapımında kullanılan hammadenin değeri bile 1 milyon Euro ve binlerce saat işlenerek kusursuz bir küre haline geldikten sonraki değeri ise bunun çok ötesinde. Tüm metrik ağırlık birimleri bu cisme göre belirleniyor ve dünya standardı bu şekilde oluşuyor. Ne var ki, standart ağırlığı tanımlayan bu birim değişmek üzere. Metroloji alanında çalışan 57 ülkeden bilim insanları Versay’da buluşarak artık kilogramın somut bir cisim değil teorik bir denkleme sabitlenmesini oylayacaklar. Ancak oylama sadece bir formalite. Bununla ilgili bilimsel çalışmalar, araştırmalar ve tartışmalar çoktan yapıldı ve karar verildi. 
Kilogramı kuantum belirleyecek
Kilogram artık evrenin dokusunda yer alan temel bir sabit sayıdan türetilecek. Bunun için kuantum mekaniğinde yer alan ‘planck sabiti’ kullanılacak. Planck sabiti ise Foton enerjisi ile elektromanyetik dalga frekansının birbirine olan oranından elde ediliyor. Bu oran kuantum mekaniğinde aksiyonun temel birimi olarak da düşünülebilecek bir sabit. Bir ağırlığı dengelemek için gerekli olan plank sabitini gösteren Kibble adında elektromanyetik güçle ölçüm yapan son derece hassas bir aygıt kullanılacak. Biliminsanları önce kilogramın tanımlanmasını bu şekilde değiştirmeyi oylayacak daha sonra da çalışmalarda ortaya konan Planck sabiti değerini oylayacak ve bu değere Kibble’da karşılık gelen ağırlığı tüm zamanlar ve mekanlar için evrensel 1 kg olarak tanımlayacaklar. Böylece insanoğlu gelecekte hangi ortamda veya gezegende yaşarsa yaşasın tüm ölçüm birimlerini şaşmadan kullanmaya devam edebilecek. 
Kilogramın tarihçesi
İlk önce ağırlık biriminin tanımı 1793’te Antoine Lavoisier tarafından yapıldı ve 0.1 metre küp hacmindeki bir buzun erime derecesindeykenki ağırlığı olarak belirlendi. ‘Grave’ olarak anılıan bu ağırlık aynı zamanda 1 litre suyu da tanımlıyordu. Bu ölçünün de binde birine gram denildi. 1 Kg’ya da ‘Garve’ demek yerine bin adet gram anlamına gelen kilogram adı verildi. 1799’da 1 Kg’ın tanımı ilk kez değiştirilerek buzun 0 derecesinde değil 4 derece sıcaklıkta erimiş su halinin ağırlığı olması kararlaştırıldı. Ancak suyun yapısı yeterince istikrarlı değildi ve ölçümlerde kullanımı da pratikolmuyordu. Dolayısıyla bu suyun ağırlığına eşit saf platinden oluşan bir silindir yapıldı. Buna da ‘Arşiv kilogram’ denildi. Ancak 90 yıl sonra 1889’da bu materyal de güncellenerek platin ve iridyum karışımı bir silindir olarak belirlendi ve günümüze kadar da kullanıldı. Kg birimi üzerinde oynama yapılmadığından emin olmak için aralarında çok ufak farklılıklar olan 14 kopyası, farklılıklar kaydedilerek dünyada 14 farklı ülkeye gönderildi.

1948’de bu kopyalar ağırlıklarında değişim olup olmadığını ölçmek için ilk kez biraraya getirildi ve aynı şartlar altında korunmalarına rağmen zaman içerisinde hepsinin ağırlıklarının değiştiği gözlemlendi. 1990’da yeniden ölçülen kilogramların ağırlıklarının giderek daha fazla değiştiği (50 mikrogram) kaydedildi. Metrik olmayan diğer tüm ağırlık birimleri de kilograma göre belirlendiği için (0.453559237 kg’ın 1 pound olması kararlaştırılmıştır) kg’ın sabit kalması herkes açısından önemli bir konu. İçinde tutulduğu fanusların vakumlu ortamında ve tüm kontrol şartlarına rağmen bu değişim nasıl ve neden olduğu tam olarak çözülebilmiş değil ancak dünya sürekli tanımı değişen bir ‘standard birim’ kullanamayacağı için yeni formüller arandı. Silikon küre bu sorunu moleküler yapı ile çözdü ve ağırlığın ne olduğu sabit atom sayısına bağlandı.
Metre de benzer süreçler geçirdi sıra Kelvin ve Amperde 
Bir metre olarak bildiğimiz standart uzunluk birimi ilk olarak Kuzey Kutbu’ndan Ekvator’a kadar olan mesafenin 10 milyonda biri olarak tanımlandı. Ancak bugün vakumlu ortamda ışığın belli bir sürede kat ettiği mesafe ile tanımlanıyor. Işık değeri kelvin ve elektrik akım şiddeti amper için de benzer şekilde evrensel sabitler belirlenecek ve 20 Mayıs 2019’dan itibaren geçerli olacak. Bu farklılıklar metroloji dünyasının dışında insanların günlük hayatında hissedilmeyecek ancak bilimsel çalışmalar ve özellikle uzay projelerinde önemli olacak.
Kaynak: https://www.theguardian.com/science/2018/nov/09/in-the-balance-scientists-vote-on-first-change-to-kilogram-in-century

Devamını Oku

Öne Çıkanlar