fbpx
Connect with us

Fizik

Çekilen İlk Karadelik Fotoğrafı Einstein’ın Görelilik Teorisini Kanıtlıyor

Published

on

Kara delik her zaman bilim kurgunun megastarları olmuşlardır. Ancak onların Hollywood’daki ünleri -şu ana kadar kimse gerçeğini görmediğini düşünürsek- biraz farklıdır. Eğer bir tanesini görmeden inanmam diyenlerdenseniz Event Horizon Teleskobu’na(EHT) teşekkür edin. Çünkü o bu güne kadarki ilk karadelik fotoğrafını çekti. Bu inanılmaz adım, tüm Dünyayı koca bir teleskoba çevirerek ve trilyonlarca kilometre ötedeki bir resmi çekerek gerçekleşti. Her ne kadar görkemli ve devrim yapıcı bir proje olsa da sadece bununla sınırlı kalmıyor. Bu aynı zamanda Albert Einstein’ ın uzayın ve zamanın doğası hakkındaki fikirlerinin, ekstrem koşullarda geçerli olup olmadığını araştıran ve kara deliklerin evrendeki rolüne ilişkin şu ana kadarki en bol bilgiyi sunan eşi görülmemiş bir araştırmadır. Uzun lafın kısası: Einstein başından beri haklıymış.

Görüntülenemeyeni Görüntülemek

Karadelikler, kütlenin çok yoğun ve sıkışmış olduğu, ışığın bile yer çekiminden kaçamadığı uzay bölgeleridir. Bir mürekkep kadar karanlık bir arkaplanda bir tanesinin fotoğrafını yakalamak neredeyse imkansız bir görev. Ancak Stephen Hawking sayesinde biliyoruz ki bu devasa kütleler sadece siyah uçurumlardan oluşmuyor. Yüksek hızda plazma yaymalarının yanında, buna karşın inanılmaz kütle çekimi yakaladığı maddeyi merkezine doğru çekiyor. Ne zaman madde karadeliğin eventhorizon*(olay ufku-olayları son olarak gözlemleyebildiğimiz, ışığın bile kaçamadığı yer)a geldiği zaman karadeliğin etrafında dönen bir disk oluşturuyor. Bu diskteki maddeler birbirleriyle temas ettikleri zaman enerji ortaya çıkartıyorlar. Bu enerji diski ısıtıyor, aynı bizim soğuk bir günde ellerimizi birbirine sürterek ısındığımız gibi. Maddeler birbirlerine yaklaştıkça sürtünme daha da fazla oluyor. Eventhorizon*(olay ufku) na yakın olan bölge yüzlerce güneş akısında parlıyor. İşte EHC karadeliğin siluetinde bu ışığı gözlemliyor. Bu resmi oluşturmak ve veriyi analize etmek inanılmaz zor bir görev. EHT ekibi bize en yakın 2 süperbüyük karadeliği hedeflediler, bunların ikiside eliptik şekilli galaksi olan M87 ve Sagittarius A* bizim Samanyolu Galaksimizin merkezindeydi.

Size bu işin ne kadar zor olduğunu şöyle anlatalım. Samanyolunun karadeliği 4.1 milyon güneş kütlesindeyken ve çapı 60 milyon kilometreyken dünyaya uzaklığı 250,614,750,218,665,392 kilometre uzak. Bu da Ankara İstanbul arasını 558 trilyon kere gitmek anlamına geliyor. EHT ekibi tarafından da söylendiği gibi New York’ ta olup Los Angles’ daki bir golf topundaki çıkıntıları görmek gibi bir şey. ( İstanbul’ dan Dubai’ deki yeri görmek gibi bir şey) Bu kadar uzakta olan bir şeyi fotoğraflamak için ekibin bir dünya kadar büyük bir teleskoba ihtiyaçları vardı. Bu kadar büyük bir teleskop olmadığı için EHT ekibi dünyanın her yerinden gelen verileri bir arada topladılar. Bu kadar uzaktaki bir maddenin doğru resmini çekmeleri için bütün teleskopların sabit olmaları ve senkronize hareket etmeleri gerekiyordu.

Bu zorluğu yenmek için ekipler atomik saatler kullandılar. Bu saatler o kadar doğrudur ki her yüz milyon yılda 1 saniye hata payları vardır. Toplanan 5000 terabitlik veri o kadar büyük olmuştu ki yüzlerce hard diskte taşınmak zorunda kaldı ve fiziksel olarak bir süper bilgisayara takıldı. Bu süper bilgisayar bu verileri arasındaki zaman farkını sildi ve son olarak elimizdeki görüntüyü oluşturdu.

Genel göreliliğin kanıtlanması

Bu buluştan aldığımız en önemli mesaj, Einstein’ ın tekrardan haklı çıkmasıydı. Son birkaç yıldır yapılan testlerde Einstein’ ın genel görelilik teorisinin evrenin en ekstrem yerlerinde bile doğru çıktığını bir kere daha gördük. Burada, Einstein’ ın genel görelilik teorisi M87 den gelen bilgileri şaşmaz bir şekilde doğru tahmin etti. Görünen o ki uzayın, zamanın ve yerçekiminin en doğal açıklaması bu. Karadeliğin merkezinin etrafındaki maddenin hızı sabit ve ışık hızına yakın hızlarda. Bu resimden EHT bilim insanları, M87 karadeliğinin güneşin 6.5 milyar katı kütleye sahip olduğu ve 40 milyar kilometre uzak olduğunu çıkarttılar. Bu Neptün’ün 200 yıllık güneş etrafında dönüşünden daha fazla demek oluyor. Samanyolu’nun karadeliğini bu zamanlarda değişen ışık çıktısından dolayı doğru gözlemlemek biraz zordu. Umarız ki daha fazla teleskop EHT’ye eklenir ve bu inanılmaz maddelerin resmini çekebiliriz.

Editör / Yazar: Uzay TEMEL

Kaynak: https://www.sciencealert.com/the-first-black-hole-photo-confirms-einstein-s-theory-of-relativity?perpetual=yes&limitstart=1

Astrofizik

Karanlık Madde Nedir

Published

on

Karanlık maddenin varlığı ortalama 70 yıl kadar önce İsviçreli bir gökbilimci olan Fred Zwicky tarafından fark edilmiş ve o günden sonra da sürekli olarak doğrulanmıştır. Şimdi Fred Zwicky’nin izlemiş olduğu yöntemi bir örnek ile anlamaya çalışacak olursak; Ay, Dünya’nın üzerine düşmüyorsa ki bunu Newton’dan beri biliyoruz, bunun nedeni gezegenimizin çevresinde bir yörüngede olmasıdır. Dünyanın çevresindeki dönme hızı ona tam da onu gezegenimize doğru çeken kütle çekim kuvvetine karşı koymak için gereken merkezkaç kuvvetini sağlar. Eğer daha hızlı dönseydi uzay boşluğuna doğru sürüklenirdi ve biz de onu kaybederdik. Yine aynı şekilde Dünya daha büyük kütleli olsaydı Ay’ın da mevcut uzaklığında bu dengeyi koruyabilmek için daha hızlı dönmesi gerekecekti. Bu şekilde Ay ’ın yörünge hızından yola çıkarak Dünya’ nın kütlesini ölçebiliriz.

karanlik-madde-nedir

Bu yöntem Dünya’ nın yörünge hareketinden yola çıkarak da Güneş’ in kütlesini öğrenmemizi de sağlamaktadır. Yine bu aynı teknik galaksinin merkezi çevresindeki yıldızların yörüngesine de uygulanabilir. Mesela Güneş’ in Samanyolu’ nun merkezinin çevresindeki dönüşünü yaklaşık saniyede 200 km hızla 200 milyon yılda tamamlar. Fakat bu noktada karşımıza bir problem çıkar. Galaksinin, yıldızları merkezine doğru çeken görünür kütlesi yani yıldızlar, bulutsular vs. onları yörüngelerinde tutmak için yeterli değildir. Bu yörüngenin korunabilmesi için yıldızlar ile galaksinin ortası arasında yaklaşık 10 kat daha fazla madde bulunması gerekir.

Diğer bir deyişle, galakside teleskoplarımız ile gözlemlediğimiz yıldız ve bulutsulardan başka bir şey olmasaydı, yıldızlar hızla uzaklaşıp galaksiler arası boşluklara doğru giderlerdi. Aynı sorun benzer çalışmaların yapıldığı diğer galaksilerde de karşımıza çıkmaktadır. Galaksilerde başka bir bileşen daha olmalıdır, bu bileşen görünmezdir yani foton yaymaz, yıldız ve bulutsuların toplamından yaklaşık 10 kat daha büyük kütlelidir ve alışık olduğumuz madde gibi çevresindeki cisimleri kendine çekme özelliğine sahiptir. İşte buna Karanlık Madde denilmektedir.
Yıldızların hareketlerine değil de galaksi yığınları içinde galaksilerin kendilerinin hareketlerine yönelik başka pek çok gözlem, nitelik bakımından görünmez maddenin varlığı ve nicelik bakımından ( görünür maddenin yaklaşık 10 katı büyüklüğünde ) bizi aynı sonuca götürecektir.

Editör / Yazar: İsa EKİCİ

Kaynak: https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy

Continue Reading

Bilim

Gerçek Yaşamda Einstein’ın Görelilik Teorisini Görebilmenin 8 Yolu

Published

on

1.Derin etkiler: Görelilik, 20. yüzyılın en ünlü bilimsel teorilerinden biridir, ancak günlük yaşamımızda gördüğümüz şeyleri ne kadar iyi açıklar? 1905 yılında Albert Einstein tarafından formüle edilen görelilik teorisi, fizik yasalarının her yerde aynı olduğu düşüncesidir. Teori, nesnelerin uzaydaki ve zamandaki davranışını açıklar ve kara deliklerin varlığından, yerçekimi nedeniyle hafif bükülmeye, yörüngesindeki Merkür gezegeninin davranışına kadar her şeyi tahmin etmek için kullanılabilir. Teori aldatıcı bir şekilde basittir.İlk olarak, “mutlak” referans çerçevesi yoktur.Bir nesnenin hızını veya momentumunu veya zamanı nasıl deneyimlediğini her ölçtüğünüzde, daima başka bir şeyle ilişkili oluşudur. İkincisi, ışığın hızı, kimin ölçtüğü ya da ölçen kişinin ne kadar hızlı gittiğinin önemi yoktur. Üçüncüsü, hiçbir şey ışıktan daha hızlı ilerleyemez. Einstein’ ın en ünlü teorisinin sonuçları derindir. Işığın hızı her zaman aynıysa, bu, Dünya’ya göre çok hızlı giden bir astronotun, Dünya’ ya bağlı bir gözlemcinin alacağından daha yavaş bir şekilde işaret eden saniyeleri ölçeceği anlamına gelir – zaman esasen zaman genişlemesi olarak adlandırılan bir fenomen olan astronot için zaman yavaşlar.

Büyük bir yerçekimi alanındaki herhangi bir nesne hızlanıyor, bu nedenle zaman genişlemesine de maruz kalacak. Bu arada, astronotun uzay gemisi uzunluğu daralmaya maruz kalacak, bu da uzay aracını uçarken fotoğrafını çektiğinizde, hareket yönünde “kıvrılmış” gibi görüneceği anlamına gelir. Ancak gemideki astronot için hepsi normal gözüküyordu. Ek olarak, uzay gemisinin kütlesi Dünyadaki insanlar açısından da artıyor gibi görünüyor. Ancak göreceli etkileri görmek için ışığın hızına yakın bir mesafeden yakınlaştırma yapmanız gerekmez.Aslında, günlük yaşamlarımızda görebildiğimiz birkaç görecelilik örneği ve Einstein’ ın haklı olduğunu gösteren bugün kullandığımız teknolojiler bile var. İşte görecelikleri eylem halinde görmenin bazı yolları.

2.Elektromıknatıs

Manyetizma göreceli bir etkidir ve eğer elektrik kullanıyorsanız, jeneratörler çalışıyor olduğu için göreliliğe teşekkür edebilirsiniz. Bir tel halkası alıp manyetik bir alanda hareket ettirirseniz, bir elektrik akımı üretirsiniz.Teldeki yüklü parçacıklar, bazılarını hareket etmeye ve akımı yaratmaya zorlayan değişen manyetik alandan etkilenir. Fakat şimdi, teli hareketsiz olarak hayal edin ve mıknatısın hareket ettiğini hayal edin.Bu durumda, tel içindeki yüklü parçacıklar (elektronlar ve protonlar) artık hareket etmemektedir, bu nedenle manyetik alan onları etkilememelidir.Ama öyle ve bir akım hala akıyor. Bu, ayrıcalıklı bir referans çerçevesinin olmadığını göstermektedir. Kaliforniya Claremont’ taki Pomona Koleji’ nde fizik profesörü olan Thomas Moore, değişen bir manyetik alanın elektrik akımı yarattığını belirten Faraday Yasasının neden doğru olduğunu göstermek için görelilik ilkesini kullanıyor.

Moore, “Bu, transformatörlerin ve elektrik jeneratörlerinin arkasındaki temel ilke olduğundan, elektrik kullanan herkes göreliliğin etkilerini yaşıyor” dedi. Elektromıknatıslar görelilikle de çalışır.Bir elektrik akımı doğru akım (DC) bir tel üzerinden aktığında, elektronlar malzemenin içinden geçer.Normalde tel, elektriksel olarak nötr görünür, net pozitif veya negatif yük olmadan.Bu yaklaşık aynı sayıda proton (pozitif yük) ve elektron (negatif yük) olmasının bir sonucudur.Ancak, DC akımıyla yanına başka bir kablo koyarsanız, akımın hangi yönde hareket ettiğine bağlı olarak teller birbirlerini çeker veya iter.

Akımların aynı yönde hareket ettiği varsayıldığında, ilk teldeki elektronlar, ikinci teldeki elektronları hareketsiz olarak görürler. (Bu, akımların yaklaşık olarak aynı güçte olduğunu varsayar). Bu arada, elektronların bakış açısından, her iki teldeki protonlar hareket ediyor gibi görünüyor.Göreceli uzunluktaki daralma nedeniyle, bunlar daha yakın aralıklarla görünmektedir, bu nedenle tel uzunluğu başına negatif yükten daha pozitif bir yük vardır. Şarj gibi ilerlediğinden, iki tel de iter. Ters yöndeki akımlar daha çekicidir, çünkü ilk tel açısından, diğer teldeki elektronlar birlikte daha kalabalık olduğundan net bir negatif yük oluşturur.Bu arada, ilk teldeki protonlar net bir pozitif yük oluşturuyor ve karşıt yükler çekiyor.

3.Global Konumlandırma Sistemi

Aracınızın GPS navigasyonunun olduğu kadar doğru çalışması için, uyduların göreceli etkileri göz önünde bulundurması gerekir. Bunun nedeni, uydular ışık hızına yakın herhangi bir şeyde hareket etmemesine rağmen, hala oldukça hızlı gidiyorlar.Uydular ayrıca yeryüzündeki yer istasyonlarına sinyal gönderiyorlar.Bu istasyonlar (ve arabanızdaki GPS ünitesi) yörüngedeki uydulardan daha fazla yer çekimi nedeniyle daha fazla hızlanma yaşıyor. Bu noktayı kesinleştirmek için, uydular saniyenin milyarda birine (nanosaniye) kadar doğru olan saatler kullanırlar.Her bir uydu Dünya’dan 20.600 mil (20.300 kilometre) yukarıda olduğundan ve saatte yaklaşık 6.000 mil (10.000 km / s) hızla hareket ettiğinden, her gün yaklaşık 4 mikrosaniye düşen göreceli bir zaman genişlemesi meydana gelir.Yerçekimi etkilerini eklersekistasyon yaklaşık 7 mikrosaniye kadar gider. Bu 7.000 nanosaniye demek. Fark çok gerçektir: Göreceli bir etki göze alınmazsa, bir sonraki benzin istasyonuna yarım mil (0.8 km) olduğunu söyleyen bir GPS ünitesi sadece bir gün sonra 8 mil uzakta olacağını söyler.

4.Altının sarı rengi

Metallerin çoğu parlaktır çünkü atomlardaki elektronlar farklı enerji seviyelerinden veya “orbitallerden” atlarlar. Metale çarpan bazı fotonlar, daha uzun bir dalga boyunda olsa da emilir ve yeniden yayılır. En görünür ışık olsa da, sadece yansıtılır. Altın ağır bir atomdur, bu yüzden iç elektronlar göreceli kütle artışının yanı sıra uzunluk büzülmesinin de önemli olduğu kadar hızlı hareket ederler. Sonuç olarak, elektronlar çekirdeğin etrafında daha kısa yollarda, daha fazla momentumla dönerler.İç yörüngelerdeki elektronlar, dış elektronların enerjisine daha yakın olan enerjiyi taşır ve absorbe edilen ve yansıyan dalga boyları daha uzundur. Daha uzun ışık dalga boyları, genellikle sadece yansıtılacak olan görünür ışığın bir kısmının absorbe edileceği ve bu ışığın spektrumun mavi ucunda olduğu anlamına gelir. Beyaz ışık, gökkuşağının tüm renklerinin bir karışımıdır, ancak altının durumunda, ışık absorbe edildiğinde ve yeniden yayıldığında, dalga boyları genellikle daha uzundur. Bu, gördüğümüz ışık dalgalarının karışımı içinde daha az mavi ve mor olması eğiliminde olduğu anlamına gelir. Sarı, turuncu ve kırmızı ışık maviden daha uzun bir dalga boyunda olduğundan altın rengi sarımsı görünür.

5.Altın kolayca korozyona uğramaz

Altının elektronları üzerindeki göreceli etki, metalin başka herhangi bir şeyle kolayca korozyona girmemesi veya reaksiyona girmemesinin bir nedenidir. Altın, dış kabuğunda yalnızca bir elektrona sahiptir, ancak yine de kalsiyum veya lityum kadar reaktif değildir. Bunun yerine, altın olan elektronların olması gerekenden “daha ağır” olmaları atom çekirdeğine yakın tutulur. Bu, en dıştaki elektronun, herhangi bir şeyle reaksiyona girebileceği bir yerde olma ihtimalinin olmadığı anlamına gelir – çekirdeğe yakın olan diğer elektronları arasında olduğu gibi.

6.Civa bir sıvıdır

Altına benzer şekilde, cıva da ağır bir atomdur, hızları ve dolayısıyla kütle artışı nedeniyle elektronları çekirdeğine yakın tutulur. Civa ile, atomları arasındaki bağlar zayıftır, bu nedenle cıva daha düşük sıcaklıklarda erir ve gördüğümüzde tipik olarak bir sıvıdır.

7.Eski televizyon

Sadece birkaç yıl önce çoğu televizyonda ve monitörde katod ışın tüpü ekranları vardı.Bir katod ışını tüpü, büyük bir mıknatısla fosfor yüzeyine elektronlar ateşleyerek çalışır.Her elektron, ekranın arkasına çarptığında ışıklı bir piksel yapar.Elektronlar, resmin ışık hızının yüzde 30’una kadar çıkmasını sağlamak için ateşlenir.Göreceli etkiler göze çarpar ve üreticiler mıknatısları biçimlendirdiğinde, bu etkileri göz önünde bulundurmaları gerekir.

8.Işık

Eğer Isaac Newton mutlak bir dinlenme çerçevesi olduğunu varsaymakta haklı olsaydı, ışık için farklı bir açıklama yapmalıydık, çünkü hiç olmazdı. Pomona Koleji’nden Moore, “Sadece manyetizma olmayacak, ışık da olmayacak, çünkü görecelilik, elektromanyetik bir alandaki değişikliklerin anında değil, sınırlı bir hızda hareket etmesini gerektiriyor” dedi.“Görelilik bu gerekliliği yerine getirmezse… elektrik alanlarındaki değişiklikler anında… elektromanyetik dalgalar yerine iletilecekti ve hem manyetizma hem de ışığa gerek kalmayacaktı.”

Editör / Yazar: Burcu AKIN

Kaynak: https://www.livescience.com/58245-theory-of-relativity-in-real-life.html

Continue Reading

Astrofizik

Karanlık Enerjinin Zayıflığı Süpernovaların Hepimizi Öldürmüyor Olmasının Nedeni Olabilir

Published

on

Evrende neden var olduğumuz sorusu hala gizemini koruyor. Bilimin ve felsefenin temel sorularından biri olan varlık bilinmezine farklı bir bakış açısı da insanlığın hala yaşamaya devam ediyor olmasının neye bağlı olduğu sorusunda kilitleniyor. Şimdi bilim insanları tarafından insanlığın süpernova patlamaları esnasında neden yutulmadığını ve varlığını sürdürebildiğini açıklamada yeni bir bilgi keşfetti. Bilim insanlığın süpernova patlamaları sırasında yok olmamasının sebebi olarak karanlık enerjinin şaşırtıcı ölçüde zayıf olmasını gösteriyor. Karanlık enerji evrenin genişlemesini hızlandıran gizemli bir güçtür. Bu alanda yeni bir çalışmaya imza atan Tokyo Üniversitesi’de görevli bir astronom olan Tomonori Totani, “Bu, daha önce çok farklı alanlar olduğu düşünülen [karanlık enerji] ve astrobiyoloji arasında yeni bir bağlantı yaratıyor” diyor. Çoğu insan, karanlık enerjiyi (özellikle gökadaları birbirinden ayıran, her şeyi sağlayan güç) – zayıf olarak düşünmez.

Fakat kuantum mekaniğinin argümanlarına ve Albert Einstein ‘ ın yerçekimi denklemlerine dayanarak, bilim insanları karanlık enerjinin, gerçekte olduğundan en az 120 katı daha güçlü olması gerektiğini düşünüyor. Eğer karanlık enerji o kadar güçlü olsaydı, galaksilerin, yıldızların ve canlı varlıkların oluşumunu engelleyerek, erken evrende çabucak ayrışırdı. Bu, bazı bilim insanlarının evrende bulunan fizik yasalarının yaşamı şekillendirmek için ince şekilde ayarlanmış olduğunu söylediği antropik yasayı göz önüne almasına sebebiyet veriyor. Totani, meslektaşlarıyla birlikte, daha önce farklı karanlık enerji güçleri için evrenin evrimini simüle etmişti.  Bilim insanı bu modelleri, canlıları barındırabilecek galaksiler oluşturabilecek modellerle sınırlıyordu.

Bu modellemelerde karanlık enerjinin gerçekte olduğundan 20 ila 50 kat daha büyük olması gerektiği sonucuna ulaşıldı.Sonuç olarak karanlık fiziğin gözlemlenen zayıflığını tam olarak açıklayamasalar da saf fiziğe dayanan argümanlar üzerinde büyük bir gelişme sağlandı. Yeni hesaplamalarında, araştırmacılar karanlık enerjinin kozmosumuzda olduğundan yaklaşık 50 kat daha güçlü olduğu modellere daha yakından baktı. Galaksiler böyle bir evrende ortaya çıkabilirler.

Ancak bu durum sadece en erken dönemlerde, gizemli madde tam güce başlamadan ve her şeyi ayrı tutmadan önce olabilir. İlk evren oldukça yoğun olduğu için, şekillenmeyi başaran galaksiler, Samanyolu’ndaki gibi gökadalardan 10 kat daha yoğun yıldızlarla dolu olacaktır. Bu yoğun galaksiler, ortalama yıldız komşularına çok daha yakın olurlar. Kısa yaşamlar yaşayan ve ardından kışkırtıcı süpernovalar olarak patlayan devasa yıldızlar, yakınlardaki gezegenlere ölümcül dozlarda radyasyon verirler, var olan herhangi bir yaşamı sterilize ederler ve hiç gözlemci bırakmazlar.

Araştırmacılar, daha önce düşünülmemiş olan bu etkinin evreni hayata elverişli hale getireceğini hesapladılar. Bu nedenle, karanlık enerjinin gözlenen zayıflığı, neden burada olduğumuzun sebebi olarak tanımlandı. Totani, gelecekteki astrobiyologların hayatın galaksinin en yoğun bölgelerinde çok daha nadir olduğunu bulması halinde teorisinin daha da güçleneceğini söylüyor.

Kaynak: http://www.sciencemag.org/news/2018/05/dark-energy-s-weakness-may-be-why-supernovae-didn-t-kill-us-all

Continue Reading

Öne Çıkanlar