fbpx
Connect with us

Bilim

Evrenin Son Bulmasına Dair Dört Teori

Published

on

Bilim insanlarına göre evren dört şekilde son bulabilir: büyük donma, büyük çökme, büyük değişim, büyük parçalanma. Bilim insanları 6 milyar yıl sonra Dünya’nın muhtemelen yok olacağına inanıyor. Güneş sönerken kızıl bir deve dönüşüp gezegenimizi yutunca… Oysa Dünya, güneş sistemindeki gezegenlerden sadece biri ve Güneş, galaksideki milyarlarca yıldızdan biri ve evrenin sadece görebildiğimiz kısmında yüz milyarlarca galaksi var. Onların sonu nasıl olacak? Evren nasıl sona erecek? Bu konuda daha az fikir birliği var. Hatta evrenin ani ve kesin bir sonu olacak mı yoksa yavaş yavaş mı kaybolacak onu da bilmiyoruz. Mevcut fizik bilgimiz evrenin altüst oluşuna dair birkaç senaryo sunuyor.

Büyük Donma

Evren ortaya çıktığı ilk günden beri genişliyor.

Evrenin sonu ile ilgili ilk ipucu termodinamiğe, yani ısı devinim bilimine dayanıyor. Fakat evrenin ısıya dayalı ölümünden ateşte yanıp kavrulma anlaşılmamalı. Tersine ısı farklarının ölümü olarak düşünülmeli. Bu kulağa daha az korkunç gelse de aslında ısı ölümü yanıp kül olmaktan daha kötü. Çünkü hayattaki her şey ısı farklılığı gerektirir. Örneğin arabanın çalışması için motorun içinin dışından daha sıcak olması gerekir. Yediğimiz besinler güneş ile evrenin diğer kısımları arasındaki büyük ısı farkı nedeniyle vardırlar.

Galaksiler birbirinden uzaklaşıyor.

Fakat evrende ısı ölümü baş gösterdiğinde her yerde her şey aynı ısıda olacaktır. Her yıldız ölecek, her madde çürüyecek, geriye parçacıklardan ve radyasyondan oluşan seyrek bir karmaşa kalacaktır. Hatta bu karmaşanın enerjisi de evrenin genişlemesi nedeniyle zamanla son bulacak, her şey hemen hemen sıfıra indirgenmiş olacaktır. Bu ‘Büyük Donma’ sonunda evren, her yanı soğumuş, ölü ve boş bir hale gelecektir. 1800’lerde termodinamik bilimi geliştikten sonra, evrenin ancak bu şekilde sona ereceği düşünülüyordu. Fakat 100 yıl önce Albert Einstein’in geliştirdiği genel izafiyet teorisi evren için daha kötü bir son öngörüyordu.

‘Büyük Çökme’ sonucu evren kendi içine doğru çökebilir.

Genel izafiyet, madde ve enerjinin uzayı ve zamanı yamultup çarpıttığını ifade ediyor. Uzay-zaman ve madde-enerji arasındaki bu ilişki tüm evren için geçerlidir. Einstein’a göre evrendeki maddeler evrenin nihai kaderini belirleyecektir.

Büyük Çöküş

Bu teoriye göre evren bir bütün olarak ya genişliyor ya da daralıyordur; aynı büyüklükte kalamaz. 1917’de bu sonuca varan Einstein kendi teorisine inanmakta zorluk çekiyordu. 1929’da Amerikan gökbilimci Edwin Hubble evrenin genişlediğine dair delilleri ortaya koydu. Eğer evren genişliyorsa bir zamanlar şimdikinden daha küçük olmalıydı. Buna dayanarak Büyük Patlama teorisi ortaya sürüldü: bir zamanlar inanılmaz küçük olan evren kısa sürede genişlemişti. Bu Büyük Patlama’dan geriye kalan parıltıyı bugün bile kozmik mikrodalga arka plan radyasyonda, gökyüzünde her yönde görülen radyo dalgalarında görebiliriz.

Kozmik mikrodalga

O halde evrenin sonu basit bir soruya bağlı: Evren genişlemeye devam edecek ve bu genişleme ne hızda olacak? Madde ve ışık gibi normal şeyler içeren bir evren için bu sorunun yanıtı ne kadar şey olduğuna bağlı. Daha fazla şey daha fazla yerçekimi demektir ki bu da şeyleri birbirine doğru çekerek genişlemeyi yavaşlatır. Bu şeylerin miktarı kritik eşiği geçmediği sürece evren sonsuza kadar genişlemeye devam edecek ve sonunda ısı ölümüyle donma noktasına gelip yok olacaktır. Fakat çok şey varsa evrende genişleme yavaşlayacak ve son bulacaktır. Sonra evren giderek küçülmeye başlayacak, ısınacak, yoğunlaşacak ve içine çökecek, yani Büyük Patlamanın tersine Büyük Çöküş yaşanacaktır.

Tümüyle boş uzay bile enerji içerir.

20. yüzyılın büyük bölümünde astrofizikçiler bu senaryoların hangisinin gerçekleşebileceği konusunda emin değildi. Bunun için uzayda ne kadar şey olduğunu tespit etmeye çalıştılar. O kritik eşiğe çok yakın olduğumuz sonucuna vardılar. Yani evrenin sonu belirsizliğini koruyordu. Fakat 20. yüzyıl sonunda durum değişti. 1998’de birbiriyle rekabet halinde olan iki ayrı astrofizikçi ekibi şaşırtıcı bir duyuruda bulundu: evrenin genişlemesi hızlanıyordu. Normal madde ve enerji evrenin bu şekilde davranmasına yol açmazdı. Bu “karanlık enerji” olarak ifade edilen yeni bir enerji türünün varlığını haber veriyordu. Karanlık enerji evreni genişletiyordu. Onun ne olduğu konusunda henüz fazla bir şey bilmiyoruz ama evrendeki enerjinin yüzde 70’inin karanlık enerji olduğu ve bu oranın giderek arttığı düşünülüyor.

Hayalet karanlık enerji her şeyi yok edebilir.

Karanlık enerjinin varlığı, evrendeki şeylerin miktarının onun nihai kaderini belirlemeyeceğini gösteriyordu. Tersine evreni bu karanlık enerji kontrol ediyor, onun genişlemesini sürekli hızlandırıyordu. Bu ise Büyük Çöküş senaryosunu devre dışı bırakıyordu. Fakat bu Büyük Donmanın kaçınılmaz olması anlamına da gelmiyor. Başka olasılıklar da mümkün.

Büyük Değişim

Evrenin sonu ile ilgili ileri sürülen bir başka teori ise kozmosun değil de atom altı parçacıkların incelenmesine dayanıyor. Bilim kurgu romanlarına özgü bir teoriye benzetilen bu teori evrenin sonuna dair en tuhaf öngörüleri içeriyor. Saf suyu tertemiz bir cam bardağa koyup sıfırın altı bir dereceye kadar soğutursanız su donma noktasının altında bile süper soğuk bir halde sıvı olarak kalmaya devam edecektir. Suda herhangi bir parçacık olmadığı ve bardakta da pürüz bulunmadığı için buzun oluşması mümkün olmayacaktır. Fakat bardağa bir tane buz kristali bıraktığınızda su hızla donacaktır.

Büyük Patlama sonucu evren oluştu.

Aynı şey uzayda da olabilir. Kuantum fiziğine göre, tümüyle bol bir vakumda az miktarda enerji vardır. Fakat daha az enerjisi olan başka bir vakum da olabilir. Yani evren bir bardak süper soğuk su gibidir. Ancak daha az enerjili vakumun bir ‘baloncuğu’ baş gösterinceye kadar varlığını sürdürecektir. Neyse ki bildiğimiz böylesi bir baloncuk yok. Fakat kuantum fiziğine göre, daha düşük enerjili bir vakum var ise, onun bir baloncuğu bir gün evrende bir yerde ortaya çıkacaktır. Bu ise yeni vakumun, etrafındaki eski vakumu ‘dönüştürmesine’ neden olacaktır; ancak baloncuk neredeyse ışık hızıyla genişleyeceği için gelişini göremeyeceğiz. Bu baloncuğun içinde her şey, elektron gibi basit parçacıkların özellikleri tümüyle farklı olabilir. Bu ise kimya yasalarının yeniden yazılması ve hatta atomların oluşmasının önlenmesi anlamına gelebilir.

evrenin-yok-olmasina-dair-dort-teori

Bu Büyük Değişim’de insanlar, gezegenler ve hatta yıldızlar yok olacaktır. Bu değişimin ardından karanlık enerji de muhtemelen farklı hareket edecek, evrenin genişlemesini hızlandırma yerine evreni kendisine çekerek Büyük Çöküş’e yol açabilecektir.

Büyük Parçalanma

Dördüncü ihtimal ise yine karanlık enerjiyle ilgili. Oldukça spekülatif ve ihtimal dışı görülse de henüz tümüyle bertaraf edilmiş değil. Karanlık enerji sandığımızdan daha güçlü olabilir ve Büyük Değişim, Donma ya da Çökme olmadan da kendi başına evrene son verebilir. Karanlık enerjinin ilginç bir özelliği vardır. Evren genişledikçe yoğunluğu sabit kalır. Yani hacmi artan evrende aynı yoğunluğu korumak için zamanla daha fazla karanlık enerji ortaya çıkar. Bu ilginç olsa da herhangi bir fizik kuralına aykırı değildir. Peki evren genişledikçe karanlık enerjinin yoğunluğu da artsa, yani karanlık enerjinin artış miktarı evrenin genişlemesinden daha hızlı olsa ne olur? Robert Caldwell’in “hayalet karanlık enerji” adını verdiği bu hipotez evren için daha da ilginç bir son öngörüyor.

‘Büyük Parçalanma’ sonucu gezegenler ve yıldızlar parçalanabilir.

Bugün için karanlık enerjinin yoğunluğu Dünya’nın yoğunluğundan, hatta Dünya’dan daha az yoğun olan Samanyolu galaksisinin yoğunluğundan daha düşük. Fakat zamanla hayalet karanlık enerjinin yoğunluğu arttıkça evreni parçalayabilir. Bu teoriye göre hayalet karanlık enerji Samanyolu galaksisini parçalayıp içindeki yıldızları savuracak, sonra da karanlık enerjinin çekim gücü Güneş’in Dünya üzerindeki çekim gücünden fazla olduğu için güneş sistemi bozulacak, Dünya patlayacak, evrenin patlamasından hemen önce de atomlar parçalanacaktır. Caldwell buna Büyük Parçalanma adını veriyor, fakat bu teorinin saçmalığını kendisi de kabul ediyor.

Hiç ümit yok mu?

Bütün bu teorilerden yola çıkarak evrenin sonunu muhtemelen bir Büyük Donma, ardından gelen Büyük Değişim ve son noktayı koyacak olan bir Büyük Çöküşe bağlamak mümkün. Fakat bunlar trilyonlarca yıl sonrasında yaşanabilecek türden olaylar. İnsanın endişelenmesini gerektirmiyor yani. Zaten o tarih gelmeden önce insanın yaşayacağı genetik değişim muhtemelen onu tanınmaz kılacaktır. Fakat insan ya da başka bir zeka sahibi canlı bütün bu olaylardan kurtulabilir mi?

Evren oluştuktan hemen sonra hızla şişmeye başladı.

Fizikçiler karanlık enerjinin keşfinden sonra biraz daha kötümser bakıyor evrenin sonu sorununa. Evrenin genişlemesi hızlanıyorsa diğer galaksilerden uzaklaşacağız ve alabileceğimiz enerji giderek azalacak demektir. Fakat bu hızlanmanın nedenini bilmediğimiz için genişlemenin devam edip etmeyeceğini de bilmiyoruz. Fakat evren genişledikçe hızlanmanın da yavaşlayacağına inanılıyor. O zaman daha umut var demektir. Peki genişleme yavaşlamaz ya da Büyük Değişim gelirse ne olur? Bazı fizikçiler çılgın bir öneri getiriyor: Evrenin sonundan kurtulmak için laboratuvarda kendi evrenimizi kurup içine atlamak. Ancak bunun günümüz teknolojisinin çok ötesinde bilgiyi ve büyük miktarda enerji gerektireceğini, hatta fizik kurallarının buna izin vereceğinden bile emin değiller.

Birden fazla evren ve sürekli oluşmakta olan yeni evrenler olabilir.

Şimdilik bu varsayım Doctor Who senaryolarına özgü görünüyor. Fakat bir başka yol daha olabilir. Bu yaklaşım ise evrenin ilk genişlemesinin bir balon gibi anlık “şişme” sonucu olduğu teorisinden yola çıkarak bu şişmenin tekrarlanmasını öngörüyor. Hatta bu teoriye göre, bizim bulunduğumuz evren birçok evrenden sadece biri ve bu çoklu evrende tek tek evrencikler var. Bizimki donsa bile çoklu evren sonsuza kadar var olmaya devam edecek ve ortaya çıkan yeni evrenciklerde yeni yaşamlar olacaktır.

Kaynak: http://www.bbc.com/earth/story/20150602-how-will-the-universe-end

Bilim

Canlı Arı Sokması ‘Akupunktur’, Ölümcül Alerjik Reaksiyonu Tetikliyor

Published

on

Canlı arıların sokmasıyla yapılan “akupunktur” seansı, İspanya’da bir klinikte bir kadında hayatına mal olan bir alerjik reaksiyonu tetikledi. Tedavi sırasında, kadını kasık kasılmalarını ve stres tedavi etmek için kasıtlı olarak canlı arılar soktu. Arıların ve akupunkturun harmanlanması bir çeşit “apiterapi” dir. Bu terim, çeşitli tıbbi koşulların bal arılarından türetilen maddelerle tedavi edilmesinin giderek daha popüler bir uygulamasını tarif eden bir terimdir. Bununla birlikte, bu işlemlerin herhangi bir yararı olduğuna dair yeterince klinik kanıt yoktur ve aslında zararlı olabilirler. Bu durumda, arı zehiri, kadının hayatını kaybetmesine neden olan şiddetli bir alerjik reaksiyona neden olduğunu ortaya koymuştur. Özel bir klinikte uygulanan bir acıyı takiben, kadın hırıldamaya başladı ve sonra bilincini kaybetti. Yerel bir hastaneye nakledildi, burada kalıcı bir komaya neden olan büyük bir felç hali teşhis edildi; Birkaç hafta sonra çoklu organ yetmezliğinden hayatını kaybettiği için araştırmacılar, son zamanlarda Araştırma Allerjolojisi ve Klinik İmmünoloji Dergisi’ nde yayınlanan raporlarında dikkat çekti .

Resimde: Apiterapi uygulayıcısı, 15 Nisan 2007 tarihinde Endonezya’nın Jakarta kentinde Cibubur Arı Merkezinde bir hastanın elini sokan bir arıyı yönetmektedir. Kredi: DimasArdian / GettyImages

Arı zehirini kullanan tedaviler binlerce yıl öncesine dayanıyor ve Temmuz 2012’deki bir araştırmaya göre Çin, Yunanistan ve Mısır’daki eski uygarlıklara kadar izlenebilir. Günümüzde apiterapi en yaygın olarak Asya, Güney Amerika ve Doğu Avrupa’da uygulanmaktadır ve bağışıklık sistemi ile ilgili rahatsızlıkları, bazı kanser türlerini ve romatizma ve artrit gibi kas iskelet sistemini etkileyen koşulları tedavi etmek için kullanılmaktadır. PLOS ONE dergisinde Mayıs 2015’te yayınlanmıştır.

Ancak arı zehiri tedavileri sıklıkla olumsuz tepkilerle bağlantılıdır ve yeni vaka raporuna göre, güvenlik ve olumlu etkinliklerini destekleyecek az sayıda yayınlanmış araştırma bulunmaktadır.

Arı zehirine duyarlı insanlar için, zehirin bileşikleri hafif ila şiddetli arasında değişen alerjik reaksiyonları tetikleyebilir. Aşırı durumlarda, alerjene maruz kaldıktan sonra birkaç dakika içinde vurulan ve alerjik bir reaksiyona neden olan anafilaksiye neden olur ve yaşamı tehdit edebilir. Anafilaksi sırasında, vücut şok durumuna neden olan kimyasallarla doludur; Mayo Clinic’ e göre kan basıncı düşüyor, dil ve boğaz şişerek nefes almayı zorlaştırıyor.

Adrenalin olarak da bilinen hormon epinefrin anafilaksi semptomlarını hafifletebilir, ancak İspanya’daki apiterapi kliniğinde herhangi bir etkisi olmadı. Vaka raporuna göre, bilinçsiz kadına tıbbi yardım geldiğinde epinefrin verilmiş olmasına rağmen ambulans, klinik görevlileri aradıktan yaklaşık 30 dakika sonra ortaya çıkmamıştır.

İlginçtir ki, bu kadın apiterapi kliniğine ilk ziyareti değildi; Aslında, son iki yıldır dört haftada bir kliniği ziyaret ediyor ve arı akupunkturu aldığını ve hiçbir yan etkisi olmadığını belirtmiştir.

Muhtemelen olan şey, tedavisi sırasında bal arıları zehirine duyarlılık geliştirmesiydi. “Ve son acı, klinik olarak önemli olan” Downingtown’ daki Astım Alerjisi ve Sinüs Merkezinde alerjisi olan Dr. Andrew Murphy. , Pennsylvania, bir e-posta ile Live Science söylemiştir. Başka bir deyişle, insanlar düzenli olarak maruz kalma sonucu arı zehiri gibi alerjenlere karşı hassasiyet geliştirebilirler.

Murphy, “Daha da rahatsız edici ve üzücü olan, bu kliniğin, bir reaksiyon durumunda hastayı tedavi etmek için epinefrin bile bulunmamasıydı” dedi.

Araştırma yazarları, apitherapy kliniklerinde insanların arı zehirine duyarlılığını belirlemek için daha titiz önlemler alınması gerektiğini – özellikle zaman içinde acı çekiyorlarsa – ve insanların bu büyük ölçüde denenmemiş prosedürlerdeki içsel tehlikeler hakkında bilgilendirilmelerini önerdi. Aslında, bir arının sokması ile yapılan arı akupunkturundan tamamen kaçınmayı düşünmelidir, diye ekledi doktorlar.

Araştırmacılar, “Apiterapiye maruz kalmanın riskleri, öngörülen faydaları aşabilir ve bu uygulamanın hem güvensiz hem de tavsiye edilemez olduğu sonucuna varmamızı sağlayabilir.” dedi.

Editör / Yazar: Nalan YILDIZ

Kaynak: https://www.livescience.com/62063-bee-acupuncture-death.html

Continue Reading

Bilim

Kanser Araştırmaları İçin Sanal Gerçeklik Kontrolü

Published

on

Sanal ve zenginleştirilmiş gerçeklik teknolojileri sadece yeni eğlence biçimleri olmaktan daha fazlasını ifade etmektedir.Şimdiye kadarcerrahları eğitmek, bakım görevlilerine uzaktan rehberlik etmek, halkın dijital müze koleksiyonlarına ilgisini çekmek ve benzeri alanlarda kullanılan sanal gerçeklik (VR), artık kanser araştırmalarını geliştirmek için de kullanılabilecektir. Kanser teşhisine yardımcı olabilmek ve genç kanser hastaları için kişiselleştirilmiş sağlık ve tedavi planları oluşturabilmek için Garvan Tıbbi Araştırma Enstitüsü, Çocuk Kanseri Enstitüsü ve Start VR ile ortak bir çalışma yürütülmektedir. Üç boyutlu modeller oluşturmak için VR’ ın kullanılması; tıp uzmanlarının kanserli tümörlerde neler olduğunu moleküler düzeyde görsel olarak ifade etmelerine yardımcı olacaktır. Genomik sekanslama (gen dizilimi), kanser anlayışımızı ve bunu nasıl tedavi edilebileceğimizi de değiştirebilmektedir. Bir kanserin genomunu (DNA’ sında kodlanan bilgileri) inceleyerek; araştırmacılar, belirli bir kansere neden olan moleküler mekanizmalar hakkında ayrıntılı bilgi sahibi olabilmektedirler. Bu, aynı zamanda tedavinin daha kesin ve kişisel olmasını da sağlamaktadır. Sanal gerçekliğin gelişim süreçleri hala çok zor olsa da, bu alanda araştırmacılara pek çok yardımcı dokunabilecektir.

VR sadece oyun için değil aynı zamanda devasa tıbbi zorlukların çözülmesine yardımcı olmak için de kullanılabilir

Görebildiklerinizi Düzeltmek Artık Daha Kolay

Kanser DNA’mızdaki mutasyonların bir sonucu olarak ortaya çıkmaktadır. Neyse ki, hücrelerimiz bizi zararlı mutasyonlardan koruyan proteinler içermektedir.En iyi bilinen proteinlerden biri, P53 adlı bir proteindir. P53, DNA’ya bağlandığında, zararlı mutasyonları tespit edip onarabilmektedir. Aslında, çoğu kanser tipi, yalnızca P53′ ün kendisi zarar gördüğünde ve DNA’ ya bağlanamadığında ortaya çıkmaktadır.

Yukarıda bir örnek olarak gösterilen fotoğraftaki gibi animasyonlar üretmek aylarca çaba gerektirmektedir; ancak üretmesine kadar çok zaman alsa da sanal gerçeklik (VR), araştırmacıların kanser mekanizmalarını anlamalarını netleştirmelerinde yardımcı olabilecek faydalı cihazlardır. Bu cihazlar, özellikle gençleri etkileyen yeterince araştırılmamış kanserlerin ayrıntılı incelenebilmesi için çok önemlidir.

P53 proteini, DNA’daki zararlı mutasyonları onarıyor. Kredi: Dr Kate Patterson, Görsel Bilim İletişimcisi ve Garvan Tıbbi Araştırma Enstitüsü’nde VR / Moleküler Animatör.

VR ile Kanser Araştırmalarının Arttırılması

Proje araştırma çalışmaları; üç boyutlu milyonlarca proteinin yapısı üzerinde benzersiz bir ayrıntı hazinesi sağlayan ve bu modellerin bir VR cihazında veya dizüstü bilgisayarda etkileşimli olarak keşfedilebilecek dinamik sahneler halinde birleştirilmesine olanak tanıyan Aquaria üzerinde çalışabilecektir. Projenin asıl amacı, araştırmacıların kanserin temelindeki moleküler süreçleri görme ve düşünme şeklini değiştirebilmek ve meslektaş klinisyenler ileve onların hastalarıyla tedavi seçenekleri hakkında kurduklarıiletişimi geliştirebilmektir.

Tüm kanser araştırma fonlarının yüzde 6′ sından daha azı, en düşük hayatta kalma oranına sahip 16 ila 25 yaş arasındaki gençlerde kanser sağ kalım oranlarının iyileştirilmesinde yardımcı olabilecek hayati buluşlar için,gençlerde görülen kanser türleri araştırmalarında kullanılmaktadır. Bu proje aynı zamanda Sony Foundation Virtual Reality Cancer Research Grant adlı bir ödüle de layık görülmüştür. Bufonlar, genç kanser hastaları için daha iyi tedaviler bulmaya yönelik araştırmaların yapılmasını arttırmayı hedeflemekte veen nihayetinde de bir çare bulunmasına katkı sağlamaktadır.

Editör / Yazar: Zeynep Erva Şahin

Kaynak: https://blog.csiro.au/a-virtual-reality-check-for-cancer-research/

Continue Reading

Bilim

Gerçek Yaşamda Einstein’ın Görelilik Teorisini Görebilmenin 8 Yolu

Published

on

1.Derin etkiler: Görelilik, 20. yüzyılın en ünlü bilimsel teorilerinden biridir, ancak günlük yaşamımızda gördüğümüz şeyleri ne kadar iyi açıklar? 1905 yılında Albert Einstein tarafından formüle edilen görelilik teorisi, fizik yasalarının her yerde aynı olduğu düşüncesidir. Teori, nesnelerin uzaydaki ve zamandaki davranışını açıklar ve kara deliklerin varlığından, yerçekimi nedeniyle hafif bükülmeye, yörüngesindeki Merkür gezegeninin davranışına kadar her şeyi tahmin etmek için kullanılabilir. Teori aldatıcı bir şekilde basittir.İlk olarak, “mutlak” referans çerçevesi yoktur.Bir nesnenin hızını veya momentumunu veya zamanı nasıl deneyimlediğini her ölçtüğünüzde, daima başka bir şeyle ilişkili oluşudur. İkincisi, ışığın hızı, kimin ölçtüğü ya da ölçen kişinin ne kadar hızlı gittiğinin önemi yoktur. Üçüncüsü, hiçbir şey ışıktan daha hızlı ilerleyemez. Einstein’ ın en ünlü teorisinin sonuçları derindir. Işığın hızı her zaman aynıysa, bu, Dünya’ya göre çok hızlı giden bir astronotun, Dünya’ ya bağlı bir gözlemcinin alacağından daha yavaş bir şekilde işaret eden saniyeleri ölçeceği anlamına gelir – zaman esasen zaman genişlemesi olarak adlandırılan bir fenomen olan astronot için zaman yavaşlar.

Büyük bir yerçekimi alanındaki herhangi bir nesne hızlanıyor, bu nedenle zaman genişlemesine de maruz kalacak. Bu arada, astronotun uzay gemisi uzunluğu daralmaya maruz kalacak, bu da uzay aracını uçarken fotoğrafını çektiğinizde, hareket yönünde “kıvrılmış” gibi görüneceği anlamına gelir. Ancak gemideki astronot için hepsi normal gözüküyordu. Ek olarak, uzay gemisinin kütlesi Dünyadaki insanlar açısından da artıyor gibi görünüyor. Ancak göreceli etkileri görmek için ışığın hızına yakın bir mesafeden yakınlaştırma yapmanız gerekmez.Aslında, günlük yaşamlarımızda görebildiğimiz birkaç görecelilik örneği ve Einstein’ ın haklı olduğunu gösteren bugün kullandığımız teknolojiler bile var. İşte görecelikleri eylem halinde görmenin bazı yolları.

2.Elektromıknatıs

Manyetizma göreceli bir etkidir ve eğer elektrik kullanıyorsanız, jeneratörler çalışıyor olduğu için göreliliğe teşekkür edebilirsiniz. Bir tel halkası alıp manyetik bir alanda hareket ettirirseniz, bir elektrik akımı üretirsiniz.Teldeki yüklü parçacıklar, bazılarını hareket etmeye ve akımı yaratmaya zorlayan değişen manyetik alandan etkilenir. Fakat şimdi, teli hareketsiz olarak hayal edin ve mıknatısın hareket ettiğini hayal edin.Bu durumda, tel içindeki yüklü parçacıklar (elektronlar ve protonlar) artık hareket etmemektedir, bu nedenle manyetik alan onları etkilememelidir.Ama öyle ve bir akım hala akıyor. Bu, ayrıcalıklı bir referans çerçevesinin olmadığını göstermektedir. Kaliforniya Claremont’ taki Pomona Koleji’ nde fizik profesörü olan Thomas Moore, değişen bir manyetik alanın elektrik akımı yarattığını belirten Faraday Yasasının neden doğru olduğunu göstermek için görelilik ilkesini kullanıyor.

Moore, “Bu, transformatörlerin ve elektrik jeneratörlerinin arkasındaki temel ilke olduğundan, elektrik kullanan herkes göreliliğin etkilerini yaşıyor” dedi. Elektromıknatıslar görelilikle de çalışır.Bir elektrik akımı doğru akım (DC) bir tel üzerinden aktığında, elektronlar malzemenin içinden geçer.Normalde tel, elektriksel olarak nötr görünür, net pozitif veya negatif yük olmadan.Bu yaklaşık aynı sayıda proton (pozitif yük) ve elektron (negatif yük) olmasının bir sonucudur.Ancak, DC akımıyla yanına başka bir kablo koyarsanız, akımın hangi yönde hareket ettiğine bağlı olarak teller birbirlerini çeker veya iter.

Akımların aynı yönde hareket ettiği varsayıldığında, ilk teldeki elektronlar, ikinci teldeki elektronları hareketsiz olarak görürler. (Bu, akımların yaklaşık olarak aynı güçte olduğunu varsayar). Bu arada, elektronların bakış açısından, her iki teldeki protonlar hareket ediyor gibi görünüyor.Göreceli uzunluktaki daralma nedeniyle, bunlar daha yakın aralıklarla görünmektedir, bu nedenle tel uzunluğu başına negatif yükten daha pozitif bir yük vardır. Şarj gibi ilerlediğinden, iki tel de iter. Ters yöndeki akımlar daha çekicidir, çünkü ilk tel açısından, diğer teldeki elektronlar birlikte daha kalabalık olduğundan net bir negatif yük oluşturur.Bu arada, ilk teldeki protonlar net bir pozitif yük oluşturuyor ve karşıt yükler çekiyor.

3.Global Konumlandırma Sistemi

Aracınızın GPS navigasyonunun olduğu kadar doğru çalışması için, uyduların göreceli etkileri göz önünde bulundurması gerekir. Bunun nedeni, uydular ışık hızına yakın herhangi bir şeyde hareket etmemesine rağmen, hala oldukça hızlı gidiyorlar.Uydular ayrıca yeryüzündeki yer istasyonlarına sinyal gönderiyorlar.Bu istasyonlar (ve arabanızdaki GPS ünitesi) yörüngedeki uydulardan daha fazla yer çekimi nedeniyle daha fazla hızlanma yaşıyor. Bu noktayı kesinleştirmek için, uydular saniyenin milyarda birine (nanosaniye) kadar doğru olan saatler kullanırlar.Her bir uydu Dünya’dan 20.600 mil (20.300 kilometre) yukarıda olduğundan ve saatte yaklaşık 6.000 mil (10.000 km / s) hızla hareket ettiğinden, her gün yaklaşık 4 mikrosaniye düşen göreceli bir zaman genişlemesi meydana gelir.Yerçekimi etkilerini eklersekistasyon yaklaşık 7 mikrosaniye kadar gider. Bu 7.000 nanosaniye demek. Fark çok gerçektir: Göreceli bir etki göze alınmazsa, bir sonraki benzin istasyonuna yarım mil (0.8 km) olduğunu söyleyen bir GPS ünitesi sadece bir gün sonra 8 mil uzakta olacağını söyler.

4.Altının sarı rengi

Metallerin çoğu parlaktır çünkü atomlardaki elektronlar farklı enerji seviyelerinden veya “orbitallerden” atlarlar. Metale çarpan bazı fotonlar, daha uzun bir dalga boyunda olsa da emilir ve yeniden yayılır. En görünür ışık olsa da, sadece yansıtılır. Altın ağır bir atomdur, bu yüzden iç elektronlar göreceli kütle artışının yanı sıra uzunluk büzülmesinin de önemli olduğu kadar hızlı hareket ederler. Sonuç olarak, elektronlar çekirdeğin etrafında daha kısa yollarda, daha fazla momentumla dönerler.İç yörüngelerdeki elektronlar, dış elektronların enerjisine daha yakın olan enerjiyi taşır ve absorbe edilen ve yansıyan dalga boyları daha uzundur. Daha uzun ışık dalga boyları, genellikle sadece yansıtılacak olan görünür ışığın bir kısmının absorbe edileceği ve bu ışığın spektrumun mavi ucunda olduğu anlamına gelir. Beyaz ışık, gökkuşağının tüm renklerinin bir karışımıdır, ancak altının durumunda, ışık absorbe edildiğinde ve yeniden yayıldığında, dalga boyları genellikle daha uzundur. Bu, gördüğümüz ışık dalgalarının karışımı içinde daha az mavi ve mor olması eğiliminde olduğu anlamına gelir. Sarı, turuncu ve kırmızı ışık maviden daha uzun bir dalga boyunda olduğundan altın rengi sarımsı görünür.

5.Altın kolayca korozyona uğramaz

Altının elektronları üzerindeki göreceli etki, metalin başka herhangi bir şeyle kolayca korozyona girmemesi veya reaksiyona girmemesinin bir nedenidir. Altın, dış kabuğunda yalnızca bir elektrona sahiptir, ancak yine de kalsiyum veya lityum kadar reaktif değildir. Bunun yerine, altın olan elektronların olması gerekenden “daha ağır” olmaları atom çekirdeğine yakın tutulur. Bu, en dıştaki elektronun, herhangi bir şeyle reaksiyona girebileceği bir yerde olma ihtimalinin olmadığı anlamına gelir – çekirdeğe yakın olan diğer elektronları arasında olduğu gibi.

6.Civa bir sıvıdır

Altına benzer şekilde, cıva da ağır bir atomdur, hızları ve dolayısıyla kütle artışı nedeniyle elektronları çekirdeğine yakın tutulur. Civa ile, atomları arasındaki bağlar zayıftır, bu nedenle cıva daha düşük sıcaklıklarda erir ve gördüğümüzde tipik olarak bir sıvıdır.

7.Eski televizyon

Sadece birkaç yıl önce çoğu televizyonda ve monitörde katod ışın tüpü ekranları vardı.Bir katod ışını tüpü, büyük bir mıknatısla fosfor yüzeyine elektronlar ateşleyerek çalışır.Her elektron, ekranın arkasına çarptığında ışıklı bir piksel yapar.Elektronlar, resmin ışık hızının yüzde 30’una kadar çıkmasını sağlamak için ateşlenir.Göreceli etkiler göze çarpar ve üreticiler mıknatısları biçimlendirdiğinde, bu etkileri göz önünde bulundurmaları gerekir.

8.Işık

Eğer Isaac Newton mutlak bir dinlenme çerçevesi olduğunu varsaymakta haklı olsaydı, ışık için farklı bir açıklama yapmalıydık, çünkü hiç olmazdı. Pomona Koleji’nden Moore, “Sadece manyetizma olmayacak, ışık da olmayacak, çünkü görecelilik, elektromanyetik bir alandaki değişikliklerin anında değil, sınırlı bir hızda hareket etmesini gerektiriyor” dedi.“Görelilik bu gerekliliği yerine getirmezse… elektrik alanlarındaki değişiklikler anında… elektromanyetik dalgalar yerine iletilecekti ve hem manyetizma hem de ışığa gerek kalmayacaktı.”

Editör / Yazar: Burcu AKIN

Kaynak: https://www.livescience.com/58245-theory-of-relativity-in-real-life.html

Continue Reading

Öne Çıkanlar