fbpx
Connect with us

Bilim

Kanserin evrim süreci nasıl işliyor?

Published

on

Kanser tümöründeki hücreler de doğadaki canlılar gibi değişip evrim geçiriyor. Bu sürecin nasıl işlediğini anlamak kanseri daha başında yenmemizi kolaylaştıracaktır. Rakamlara bakılırsa kansere karşı zafer hala uzak görünüyor. ABD’de bir insanın yaşamı boyunca kanser olma riski erkeklerde yüzde 42, kadınlarda yüzde 38. İngiltere’deki Kanser Araştırmaları Vakfı ise bu oranı sırasıyla yüzde 54 ve 48 olarak veriyor. 2015 itibariyle İngiltere’deki kanserli hasta sayısı 2,5 milyona ulaştı. Bu her yıl yüzde 3’lük bir artış, başka bir deyişle beş yılda 400 bin ekstra kanser hastası demek. Bu rakamlar kanserin giderek daha yaygınlaştığını gösteriyor. Peki neden birçok insan hayatının bir döneminde kanser oluyor? Aslında kanser evrim sürecinin kötü bir yan ürünüdür. İnsan gibi büyük ve karmaşık bir yapıya sahip hayvanlar bu özelliklerinden dolayı kansere yatkındır.  Hücre bölünmesi
Kanserin nasıl oluştuğunu anlamak için vücudumuzdaki temel bir işleyişe bakmak gerekir: Hücre bölünmesi. Hepimizin kökeni bir yumurta ile sperm hücresinin birleşmesine dayanıyor. Birkaç gün içinde yumurta ve sperm birkaç yüz hücre içeren bir topak haline gelmiştir. 18 yaşına geldiğimizde bu hücreler o kadar çok bölünerek çoğalmıştır ki vücudumuzda ortalama ne kadar hücre olduğu konusunda bilim insanlarının öne sürdüğü rakamlar arasındaki fark bile trilyonlarla ifade edilir.  Vücudumuzdaki hücre bölünmesi sıkı bir kontrol altında gerçekleşir. Örneğin ellerimiz ilk büyümeye başladığında bazı hücreler “intihar” ederek parmaklarımız arasında boşlukların oluşmasını sağlar. Kanser de hücre bölünmesi ile ilgilidir; ama bir farkla: Kanserli hücre, diğer hücrelerin tabi olduğu kontrollü bölünme kurallarını çiğner. “Bu hücreler sanki farklı bir organizma gibidir” diyor Cambridge Üniversitesi’nden Timothy Weil. “Ne kadar hızlı bölünürse diğer hücrelerden daha fazla besin alabilecek ve tutunup büyüyebilecektir.” “Yetişkin hücreler sürekli kontrol altındadır. Ama kanser bu hücrelerde kontrolün kaybolması demektir” diyor Weil.
Mutasyon  Kanserin kontrolsüz bir şekilde büyümesi, P53 geni gibi hücre büyümesini önleyen genlerin kanserli hücrelerde mutasyona uğramış olması nedeniyledir. Fakat vücudumuz bu mutasyonları fark etme konusunda oldukça iyidir. Sahip olduğumuz biyolojik sistemler, mutasyona uğramış hücreler zararlı hale gelmeden devreye girerek onları ortadan kaldırır. Fakat mutasyona uğrayarak bozulmuş bu hücrelerin çok azı gözden kaçabilir. Bunlar zamanlar bölünüp çoğalarak milyarlarca sayıya ulaşıp tümör haline gelir. Tümör oluştuktan sonra, kanserli hücrelerin her biri yok edilinceye dek o kişide kanser var demektir. Çünkü birkaç tanesi bile sağlam kalsa hızla çoğalıp yeniden tümör oluşturabilir. Kanser hücrelerinin hepsi birbirinden farklıdır. Bölündüklerinde mutasyona uğrayıp değişirler. Yani kanser tümöründeki hücreler genetik olarak birbirinden farklıdır. Tıpkı diğer canlıların da zamanla genetik varyasyonlar geliştirdiği gibi. Bütün canlılarda olduğu gibi doğal seleksiyon yoluyla en güçlünün hayatta kalması süreci işlediğinden tümördeki hücreler de daha kanserli olacak şekilde evrilir. Tümörlerin genetiğinin sürekli değişime uğraması kanserin tedavisini zorlaştırıyor.
Tedavi yöntemleri  Kanser tümörünün kökünü bir ağacın gövdesi ve daha sonra mutasyona uğrayan hücreleri de farklı dalları olarak düşünebiliriz. Tümörün kökünü hedef alan terapiler bir süre sonra işe yaramaz hale geliyor; çünkü zamanla dallardan birindeki kanser hücreleri bu tedaviye karşı direnç geliştiriyor. Ortalama bir tümör bin milyar kadar kanser hücresi içerir. İngiltere’den kanser uzmanı Charles Swanton tümördeki üç ana mutasyonu hedef alarak direnç geliştiren kanserli hücre sorununu en asgariye indirmeyi deniyor. Ancak bu oldukça pahalı bir yöntem; çünkü tek tek hastaların kanserini inceleyip ilk ana mutasyonları bulmaları ve tedaviyi ona göre belirlemeleri gerekiyor.  İtalyan kanser uzmanı Alberto Bardelli ise farklı bir yöntem geliştirmiş. ‘Klon’ adını verdiği dirençli kanser hücrelerinin tümörde baskın hale geldiği zamanı kolluyor. Bu sırada kanser tedavisi için uygulanan ilacı keserek diğerlerinin gelişip dirençli olanları ortadan kaldırmasını sağlıyor. Sonra başka klonları diğerlerine karşı kullanıyor. Diğer klonlar üstünlük kazandığında yeniden ilaca başlıyor. Bunlar direnç geliştirmemiş olduğu için ilaç etkili oluyor. Bunu ‘klonlar savaşı’ olarak adlandırıyor Bardelli. Bu taktiğin işe yarayıp yaramadığı bu yaz başlanacak klinik deneylerde görülecek. Bu evrimsel yaklaşım işe yarayabilir; ama aynı zamanda kanseri ilk tetikleyen şeyin ne olduğunu anlamak gerekir. 2013’te araştırmacılar en yaygın kanser mutasyonlarını bulmak için hastaların genomlarını incelemeye başladı.
DNA tamiri  Glasgow Üniversitesi’nden Andrew Biankin, akciğer kanserinde sigara dumanına, cilt kanserinde morötesi ışınlara maruz kalmanın ve DNA’yı tamir yeteneğinde kalıtsal bir sorun olmasının önemli olduğunu vurguluyor. Bunların yanı sıra nedeni belli olmayan kanserler de var. Peki bu tür genetik değişikliklere yol açan şey nedir? Kanser tedavisi için yeni ilaçlar geliştirmek gerektiği gibi, önleme üzerinde durmanın daha önemli olduğunu vurgulayanlar da var. Amerikan Kanser Vakfı’ndan Otis Brawley, 1900’de kanserden ölüm 100 binde 65 iken, 90 yıl sonra 210’a çıktığını söylüyor. Fakat son 20 yılda alınan önleyici tedbirler sayesinde ölüm oranlarında yüzde 25 azalma kaydedildiğini ekliyor. ABD’de kanserden ölümlerin üçte biri sigarayla bağlantılı.  O halde sigara önlenebilir ölüm nedenlerinin başında geliyor. Kanserden ölüm oranları düşüyor olsa da kanser teşhislerinde bir artış söz konusu. Bunun bir nedeni, prostat kanserinde olduğu gibi, teşhis koymadaki gelişmeler ise diğeri de insanların çok daha uzun yaşamasıdır. “Uzun yaşadığınızda kanser olursunuz” diyor Biankin. Çünkü hücrelerimiz DNA’larının bütünlüğünü bu kadar uzun süre koruyacak kadar evrilmedi. Brawley 40 yaşın üstündeki insanların belli bir aşamada gen mutasyonuna uğrayarak kanser olacağını söylüyor.  Bu korkutucu olsa da doğal savunma sistemimiz birçok mutasyonu daha başlangıç aşamasında tespit edip tümör haline gelmesine izin vermeden ortadan kaldırıyor. “Vücudumuz milyonlarca yıldan beri geliştirdiği kaynakları kullanıyor” diyor Bardelli. “Umutluyum. Kanseri bir gün yeneceğimizden hiç şüphem yok. Bazen sorunun ne olduğunu tam tespit edemediğimizden başarısızlığa uğruyoruz. Ama bu kimsenin hatası değil, bilim böyle işliyor.” Kaynak: http://www.bbc.com/earth/story/20160601-is-cancer-inevitable

Advertisement
1 Comment

1 Comment

  1. Celal

    22/01/2019 at 11:52 am

    Değişik bir bakış açısı.
    Sanatlı bir eser Sanatkârı Îcab eder Saygılarımla

Leave a Reply

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Bilim

Cerrahlar, Bir Bebeğin Beyninde Olgunlaşmış Diş Şeklinde Bir Tümör Buldular

Published

on

Bilim insanları yaşına göre fazla hızlı gelişen bir bebeğin beynini incelediklerinde olgunlaşmış diş şeklinde bir tümör buldular. The New England Journal of Medicine’in 2014’ teki haberine göre olay Maryland Üniversitesi ve Baltimore Johns Hopkins Children’ s Center’ ın beyin cerrahlarının 2014’ te 4 yaşındaki bir çocuğun beyin MR’ ını incelemeleriyle ortaya çıktı. İncelemelere göre tümör ceviz büyüklüğündeydi ve yan kısımları boyunca küçük yapılar vardı. Bebek hemen operasyona alındı ve tümör beyninden alındı. Tümörün embriyonik hipofiz dokusundan türemiş bir tümör diğer adıyla Kraniyofarenjiyomlar ( merkezi sinir sisteminin sellar ve para sellar bölgesinde yer alan iyi huylu büyüyen tümörler) olduğu ortaya çıktı. Bu tümör genellikle küçük çocuklarda oluşsa da nadiren yetişkinlerde de görülebiliyor. Genellikle beyin tabanında bulunup hormonları düzenleyen bir bez olan hipofiz bezinin yakınlarında görülüyor.

İyi huylu oldukları için yayılıp kansere sebep olmuyorlar ama hipofiz bezine yakınlıklarına göre bazı hormonal problemelere sebep olabiliyorlar. Bu olay oldukça ilginç bir vakanın sadece başlangıcıydı. Ameliyat sırasında cerrahlar buldukları tümörün dişleşmiş olduğunu gördüler. Bu tümörler teratom olarak adlandırılır. Teratom yalnızca diş yapısında olmak zorunda değildir; kas, saç, kemik gibi dokulardan oluşabilirler. Bu teratomun ise neden ya da nasıl diş halinde şekillendiği belli değil. Maryland Üniversitesi Medikal Merkezi’nde ameliyatı gerçekleştiren doktor Narlin Beaty, Lİve Science’ a yaptığı açıklamada şöyle konuştu:

Diş şeklinde bir tümör her gün gördüğümüz bir şey değil. Kraniyofarenjiyomlar’ da ise benzeri görülmemiş bir olay. Tümör başarıyla alındı ve çocuk aylar içinde kalıcı bir iyileşme göterdiyse de hala tedavi edilebilir hormonal problemleri var. Bunun içinse tiroidal ve adrenal bezlere hormonal replasman tedavisi uygulanıyor. Doktor Beaty patologların olayı araştırdığını ve ileride yapılacak araştırmalar için dişten örnekler alındığını söyledi. Son olarak hastanın çok iyi bir iyileşme gösterdiğini ve takip için belirli aralıklarla MRI taramasına alındığını belirtti.

Editör / Yazar: Şeyma SÜRÜCÜ

Kaynak: https://www.iflscience.com/health-and-medicine/surgeons-found-fully-formed-teeth-deep-inside-a-babys-brain/

Continue Reading

Bilim

Son araştırmalar, görmeyen insanların beyinlerinin işitme yetisini keskinleştirdiğini ortaya koydu

Published

on

Solda: Araştırmacılar, işitsel kortekste yanıtları ölçerek, beyinde frekans yanıtlarının nasıl temsil edildiğinin bir haritasını bulmaya başladılar. Sıcak renkler, beynin, düşük tonlu tonlara en çok yanıt veren bölgeleri temsil ederken, mavi renkler, yüksek tonlu tonlara daha çok yanıt veren bölgeleri temsil ediyor. Sağda: Araştırmacılar beynin her bir köşesinin seçici olduğu frekans aralığını incelediklerinde, görme engelli bireyler için ortamdaki sesleri seçme ve tanımlama yeteneğinin altında yatan ayarlamaların daha dar olma eğiliminde olduklarını gördüler.

Araştırmalar, doğuştan kör olmuş veya hayatın erken dönemlerinde kör olmuş insanların, özellikle müzikal yetenekler ve uzayda hareket eden nesneleri takip ederken (yalnızca ses kullanarak yoğun bir yoldan geçmeyi hayal edin) daha hassas bir işitme duyusuna sahip olduğunu göstermiştir. On yıllardır bilim insanları, beyindeki hangi değişikliklerin bu gelişmiş işitsel yeteneklere sebep olduğunu merak ettiler.

22 Nisan tarihinde Washington Üniversitesi’nden bir grup araştırmacının biri Journal of Neuroscience’ta, diğeri Ulusal Bilimler Akademisi’nin Bildirilerinde yayınlanan bir araştırma makalesinde beyinlerdeki iki farklılığı tanımlamak için fonksiyonel MRG kullan işitsel bilgiyi daha iyi kullanarak kör bireylerin yeteneklerinden sorumlu olabilecek bölgeyi ortaya çıkardı.

UW’de bir psikoloji profesörü olan ve her iki çalışmanın da yazarı olan Ione Fine, “ Kör insanlar için işitme duyusunun bir önemi var, çünkü dünyayı görsel bilgi olmadan yaşamak zorunda kalıyorlar. Bunun beyinde nasıl olduğunu araştırmak istedik” dedi.

Dinlerken beynin hangi kısımlarının en aktif olduğunu görmek yerine, her iki çalışmada da beynin işitsel frekanstaki ince farklara karşı duyarlılığı incelenmiştir.

UW Psikoloji Bölümü’nden mezun olan ve Journal of Neuroscience’ın makalesinde başyazar olan Kelly Chang, “Nöronların ne kadar hızlı ateşlendiğini değil, nöron popülasyonlarının sesle ilgili bilgileri ne kadar doğru bir şekilde gösterdiğini ölçtük” dedi.

Bu çalışma, işitsel kortekste, kör olan bireylerin, ses frekansındaki küçük farkları ayırt etmede, görüşülen deneklerden daha dar sinirsel “ayarlama” gösterdiğini ortaya koymuştur.

Fine, “Bu, körlüğün işitsel kortekste plastisite ile sonuçlandığını gösteren ilk çalışmadır. Bu önemlidir, çünkü bu, beyin ve görme engelli bireylerde çok benzer işitsel bilgileri alan beynin bir alanıdır.” dedi. “Fakat kör bireylerde, daha fazla bilginin sesten çıkarılması gerekiyor – ve bu bölge sonuç olarak gelişmiş kapasiteler geliştiriyor gibi görünüyor.”

“Bu, bebek beyinlerinde yeteneklerin gelişiminin içinde büyüdükleri ortamdan nasıl etkilendiğine dair zarif bir örnek sunuyor.”

İkinci çalışma, doğuştan kör olan ya da hayatın erken dönemlerinde kör olan bireylerin, uzayda hareket eden nesneleri nasıl algıladığını incelemiştir. Araştırma ekibi, beynin hMT + adı verilen ve hareketli bireylerin hareketli görsel objeleri izlemekten sorumlu olan bir alanının görme engelli bireylerde işitsel sinyallerin hem hareketi hem de hareketin sıklığını yansıtan sinirsel tepkiler gösterdiğini göstermiştir. Bu, kör insanlarda, hMT + alanının benzer bir rol oynamak üzere işe yaradığını göstermektedir – arabalar gibi hareketli işitsel objeleri veya etraflarındaki insanların ayak seslerini takip etmek gibi.

Son araştırmalar, görmeyen insanların beyinlerinin işitme yetisini keskinleştirdiğini ortaya koydu

Journal of Neuroscience’taki bildiri iki ekibin işi – biri UW’de, diğeri İngiltere’deki Oxford Üniversitesi’nde. Her iki ekip de çalışmaya katılanların sinirsel tepkileri ölçerken, katılımcılar fMRI makinesi beyin aktivitesini kaydederken frekansta farklı bir Mors kodu benzeri ton dizisi dinlemiştir. Araştırma ekipleri, kör katılımcılarda, işitsel korteksin, her bir sesin frekansını daha doğru bir şekilde temsil ettiğini buldu.

Chang, “Çalışmamız, kör bireylerin beyninin, frekansları daha iyi algıladığını gösteriyor” dedi. “Görme gücü olan bir kişi için, sesi doğru bir şekilde temsil etmek önemli değildir, çünkü nesneleri tanımalarına yardımcı olacak görüşü vardır, kör insanlar sadece işitsel bilgilere sahiptir. Bu bize kör bireylerin beyninde hangi değişikliklerin ortamdaki sesleri seçip tanımlamakta daha iyi olmasına neden olduğunu açıklama konusunda bir fikir verir.”

Ulusal Bilimler Akademisi çalışmasının bildirileri, hMT + bölgesinin kör insanların beyninin sesi kullanarak nesnelerin hareketlerini izlemelerine nasıl yardımcı olabileceğini incelemiştir. Katılımcılar bir kez daha işitsel frekanstaki farklı tonları dinledi, ancak bu kez sesler hareket ediyormuş gibi geliyordu. Daha önceki çalışmalarda da görüldüğü gibi, kör bireylerde hMT + alanındaki sinirsel tepkiler seslerin hareket yönü ile ilgili bilgiler içeriyordu, oysaki katılımcılarda bu sesler önemli sinirsel aktivite üretmedi.

Araştırmacılar, frekansa göre değişen sesler kullanarak, kör bireylerde, hMT + bölgesinin seslerin hareketinin yanı sıra frekans için de seçici olduğunu ve bu bölgenin uzaydaki hareketli nesneleri algılamasına yardımcı olabileceği fikrini desteklediğini gösteriyordu.

Fine, “Bu sonuçlar, erken körlüğün, işitsel görevleri nispeten karmaşık bir şekilde çözmek için görsel alanların aktif olmasına yol açtığını gösteriyor.” dedi.

Bu çalışma aynı zamanda iki görme engelini kurtarma konusunu da içeriyordu – bebeklikten erişkinliğe kadar görme bozukluğu olan, yetişkinlikte ameliyatla görme yetisi iyileştirilen bireyler. Bu bireylerde, hMT + alanı hem işitsel hem de görsel hareketi işleyebilen ikili bir amaca hizmet ediyor gibiydi. Görme engelli olan kişilerin dahil edilmesi, beyindeki bu plastisitenin gelişimin erken aşamalarında gerçekleştiği fikrine ek kanıtlar verir, dedi Fine. Çünkü sonuçlar beyinlerinin erken yaşlarının bir sonucu olarak işitsel işleme geçiş yaptığını gösteriyor; ancak yetişkinlik döneminde görme iyileştirildikten sonra bile bu yetenekleri koruyor.

Fine’a göre, bu araştırma beynin nasıl geliştiğine dair mevcut bilgimizi artırıyor, çünkü ekip sadece beynin hangi bölgelerinin körlük sonucu değiştiğini araştırmıyor, aynı zamanda ne gibi değişiklikler olduğunu tam olarak inceliyor – özellikle, frekansa duyarlılığı. Çalışma erken dönemde kör olan insanların dünyayı nasıl anladıklarını da açıklayabilir. Çalışma katılımcılarından birinin tanımladığı gibi, “Sen gözlerinle görüyorsun, ben kulaklarımla görüyorum.”

Her iki çalışma da Ulusal Göz Enstitüsü ve Ulusal Sağlık Enstitüleri tarafından finanse edildi. Ulusal Bilimler Akademisi çalışmasının Bildirileri, UW’den Elizabeth Huber ve Reno, Nevada Üniversitesi’nden Fang Jiang tarafından ortaklaşa yazılmıştır. Journal of Neuroscience çalışması, Chang ve Huber ile birlikte, Oxford Üniversitesi’nden Ivan Alvarez, Aaron Hundle ve Holly Bridge tarafından yazılmıştır.

Çeviren: Bünyamin TAN

Kaynak: https://www.sciencedaily.com/releases/2019/04/190422151020.htm

Continue Reading

Bilim

Biyosentetik Çift Çekirdekli ilk hücresel bilgisayarı Üretildi

Published

on

ETH araştırmacıları CRISPR-Cas9-tabanlı çift çekirdek işlemcisini insan beynine entegre etmeyi başardı. Böylece biyo-bilgisayar üretimi için büyük bir adım atılmış oldu. Dijital dünyadan ilham alınarak üretilmiş bir modelle gen değişimlerini kullanarak genlerin getirdikleri özellikleri dışa vuruşlarını yani gen ekspirasyonunu kontrol etmek sentetik biyolojinin temel amaçlarından biri. Dijital teknoloji verileri işlemek için, devreler oluşturarak ‘Mantık Kapıları’ isimli tekniği kullanır. Örneğin C çıktısı yalnızca A ve B girdileri aynı anda var olduğunda elde edilebilir. Biyoteknologlar hücrelerde gen değişimi sağlamak için benzer bir devre oluşturma tekniği oluşturmayı denediler. Bu yolda bazı dezavantajları vardı. Yeterince esnek değillerdi, aynı anda yalnızca bir kodu ve girdi olarak yalnızca tek bir spesifik metabolik girdiyi işleyebiliyorlardı. Hücre içinde denenecek bu daha karmaşık işlemler belirli koşullarda başarılı olabiliyordu ve başarısızlık ihtimali her zaman daha yüksekti. Dijital dünyada bu devreler elektron biçimdeki tek bir girdiye bağlıdır. Bilgisayarlar devredeki bu eksikliği saniyede 1 milyon girdi işleyerek hızlarıyla telafi edebilir. Hücreler bilgisayarlara nazaran çok daha yavaş olsalar da saniyede 100,000 girdi işleyebilirler. Hücresel bilgisayarlar henüz insan metabolizmasının bu muazzam veri işleme kapasitesine ulaşamadı.

BİYOLOJİK BİLEŞEN İŞLEMCİSİ

Basel’deki ETH Zürih Biyosistem Bilimi ve Mühendisliği Bölümünde Biyoteknoloji ve Biyomühendislik Profesörü MartinFussenegger tarafından yönetilen bir ekip, farklı programlama türlerini kabul eden esnek bir çekirdek işlemcisi veya merkezi işlem birimi (CPU) oluşturmak için biyolojik bileşenleri kullanmanın bir yolunu buldu. İşlemci ETH Zürih’teki bilim insanları taradından CRISPR-Cas9 sistemi temel alınarak üretildi ve bu işlemci aynı anda birden fazla RNA biçimindeki kodu işleyebiliyor. İşlemcinin çekirdeğini Cas9 isimli proteinin değişik bir formu oluşturuyor. Buna karşılık olarak girdiler RNA serileri tarafından taşınıyor ve merkezi işlem birimi genlerin nasıl ifade edileceğini düzenliyor, sonucunda da belirli proteinler üretiliyor. Bu yaklaşımla bilim insanları insan hücrelerinde ölçeklenebilir devreler oluşturarak yarı dijital toplayıcılar oluşturarak 2 girdi ve 2 çıktıyla tek haneli binary kodları oluşturabilir.

GÜÇLÜ BİRÇOK ÇEKİRDEKLİ VERİ İŞLEMCİSİ

Biliminsanları bir adım daha ileri gittiler ve bilgisayarlardakine benzer, iki çekirdeği tek bir hücrede birleştiren biyolojik çift çekirdekli bir işlemci ürettiler. Bunun için iki farklı bakterideki CRISPR-Cas9 proteinlerini kullandılar. Fussenegger birden fazla çekirdeğe sahip olan ilk hücresel bilgisayarı ürettiklerini ifade etti. Biyolojik bilgisayar aşırı küçük olmakla birlikte teoride istenen herhangi bir boyuta dönüştürülebilir. ‘Milyonlarca çift çekirdekli hücreye sahip bir mikrodoku hayal edin. Bu bilgisayarsal uzuvlar enerjinin yalnızca küçük bir kısmını kullanarak süper-bilgisayarların çok daha ötesine ulaşabilir.’ dedi Fussenegger.

TEŞHİS VE TEDAVİ UYGULAMALARI

Hücresel bilgisayarlar vücuttaki sinyalleri ve kimyasal belirteçleri okuyup işleyerek ona uygun cevabı oluşturabilir. Doğru şekilde programlanmış bir ana işlem birimiyle bu bilgisayarlar 2 farklı girdiden ortak bir sonuç çıkarabilir. Mesela yalnızca A belirtisi varsa bilgisayar buna uygun teşhis molekülünü ya da uygun ilacı oluşturabilir. Yalnızca B belirtisi varsa bilgisayar buna göre programlamalar yapar ama 2 belirteç aynı anda mevcutsa bilgisayar 3. bir cevap oluşturur. Kanser gibi olgularda gerekli tıbbi cevabı oluşturmuş olur. Fussenegger’a göre bu bilgisayarak geri bildirimleri entegre ederek hastalıkları önelemek için gerekli önlemleri alabilecek. Örneğin B maddesinin vücutta belirli bir süredir bulunması kanser metastazının göstergesiyse bilgisayar buna göre maddeler salgılayıp metastazın önüne geçebilecek.

ÇOK ÇEKİRDEKLİ İŞLEMCİLERİN ÜRETİMİ MÜMKÜN

‘Hücresel bilgisayar devrimsel bir fikir gibi görünse de durum aslında öyle değil. İnsan vücudu zaten büyük bir bilgisayar. Zamanın başlangıcından beri metabolizmamız, binlerce hücrelerimizde bilgi işleme gücü üretiyor.‘ diyor Fussenegger. Hücrelerimiz dışarıdan aldığı girdileri işleyip ya kimyasal ya da biyolojik çıktılar oluşturuyor. ‘Süper bilgisayarların aksine bunu yapmak için tek ihtiyacıysa bir dilim ekmek.’ Fussenegger’in bir sonraki amacıysa çok çekirdekli bir hücresel bilgisayar üretip, iki çekirdekli hücresel bilgisayardan daha fazla bilgi işleme gücü oluşturmak.

Editör / Yazar: Şeyma SÜRÜCÜ

Kaynak: https://www.ethz.ch/en/news-and-events/eth-news/news/2019/04/biosynthetic-dual-core-cell-computer.html?fbclid=IwAR3q197pqz1IS0ZUTnUZXlCXQssEWi5Zckf25rl9j58tlKpvG5CD5RqA8qg

Continue Reading

Öne Çıkanlar