fbpx
Bizi Takip Edin

Bilim

Kilo Kaybettiğinizde Vücut Yağına Gerçekte Ne Olduğuyla İlgili Çarpıcı Bir Araştırma Yayınlandı

Yayınlandı

üzerinde

Toplumda ciddi oranda kilo verme takıntısı bulunuyor. Yapılan bir çalışmayla kilo verildiğinde yakılan yağa ne olduğu tespit edildi. UNSW Science bünyesindeki bir ekip tarafından yürütülen araştırmada, kilo verildiğinde yağ kütlesine tam olarak ne olduğu hesaplandı. Yapılan hesaplamalarda doktorların ve önde gelen diyet uzmanlarının tüm teorilerinin yanlış olduğu ortaya çıktı. Kilo verildiğinde kayıp kütle ısıya ya da enerjiye dönüşmüyor. Aslında tüm olan kilonun nefese dönüşmesi.

British MedicalJournal’da yayınlanan sonuçlara göre, 22 kilo (10 kg) yağ, nefes alırken ekshale edilen 18.5 pound (8.4 kg) karbondioksite ve 3.5 kg (1.6 kg) suya dönüşüyor. Sonra idrar, gözyaşı, ter ve diğer vücut sıvıları yoluyla atılıyor. Fizikçi ve TV sunucusu olan RubenMeerman, “Doğru yanıt, kütlenin çoğunun karbon dioksit olarak dışarı atıldığı” dedi.
Meerman önce 33 kilo yağını (15 kg) düşürdüğünde kilo kaybı biyokimyasına ilgi duydu.Ancak doktorlara bu ağırlığın nereye gittiğini sorduğunda, kimsenin bunu söyleyemediğini gördü. 150 doktor, diyetisyen ve kişisel eğitimciyi araştırmasının ardından, yarısından fazlasının yağın ısıya veya enerjiye dönüştürüldüğünü düşündüğünü keşfetti. Fakat bir fizikçi olan, Meerman bunun Kütlenin Korunması Yasasını ihlal ettiğini biliyordu.

Doğru yanıtların araştırılabilmesi için Meerman , UNSW Biyoteknoloji ve Biyomoleküler Bilimler Şefi Andrew Brown’la ortaklık kurdu. Ekip, kilo kaybıyla sonuçlanan biyomoleküler reaksiyonları hesaplamaya başladı.
Yediğimiz aşırı karbonhidrat ve proteinler trigliseridlere (karbon, hidrojen ve oksijenden oluşan bileşikler) dönüştürüldüğünde kilo alınır ve daha sonra yağ hücrelerinde lipid damlacıklarında depolanır. Kilo vermek için karbonlarına erişmek ve bu trigliseridlerin parçalaması gerekir. Sonuçlar, 22 kilo (10 kg) insan yağının tamamen parçalanabilmesi için 64 kilo (29 kg) oksijen teneffüs edilmesi (ve bir süre boyunca 94.000 kaloriyi yaktığımızı) gerektiği anlaşıldı. Bu reaksiyon 62 kilo (28 kg) CO2 ve 24 kilo (11 kg) su üretmektedir.

Ekip verdiği demeçte, “Hesaplamalarımızda akciğerlerin yağın temel boşaltım organı olduğunu gördük” dedi .Bununla birlikte, bu reaksiyonda yağ hücrelerine olan biteni tam olarak göremediler. Aylarca araştırmanın ardından Brown, 1949’da yayınlanan ve sorunun çözülmüş olduğu bir formül keşfetti. Bu formülde oksijen atomlarının yağdaki karbon ile hidrojen arasında 2: 1 oranında (karbon dioksit ve su oluşturan) paylaşıldığı görülüyor. Ancak maalesef bu sadece derin nefes almanın kilo vermemize yardımcı olacağı anlamına gelmiyor – ilk etapta karbonun kilidini açmak ve yağın parçalanması için egzersiz yapmak zorundayız.
Kaynak: https://www.sciencealert.com/where-body-fat-ends-up-when-you-lose-weight

Reklam Alanı
Yorum için tıklayın

Yanıtla

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Bilim

Çin’in ‘yapay güneşi’ 100 milyon derecelik ısı elde etti

Yayınlandı

üzerinde

Yazan

Çin’in ‘yapay güneş’ adını verdiği Süper İletken Kaynaşım Merkezi Tokamak (EAST) yapılan deneyde 100 milyon derecelik plazmadan oluşan ısıya ulaştı. Çin Bilimler Akademisi’ne bağlı Plazma Fizik Enstitüsü’nün web sitesinden yapılan açıklamada daha önce elde edilen 50 milyon derecelik ısı hacminden sonra, 100 milyon derecelik ısı hedefine de ulaşıldığı belirtildi. Jiangsu bölgesinde bulunan reaktörde nükleer füzyon ile üretilen ısının aynı zamanda temiz enerji olarak da kullanılması hedefleniyor. 1950’lerde Rus fizikçi Igor Yevgenyevich Tamm ve Andrei Sakharov tarafından bulunan Tokamak, plazmanın kapalı manyetik alan bölgesi içinde hapsedilmeye çalışıldığı bir plazma tutucu sistem olarak biliniyor.

Çin devlet televizyonuna göre Süper İletken Kaynaşım Merkezi Tokamak (EAST) Çin’in dördüncü nesil nükleer füzyon üreten santrali. Yapay güneş olarak adlandırılan bu santralin amacı, okyanuslarda bolca bulunan döteryum ve trityumu kullanarak güneşin içerisinde gerçekleşen nükleer füzyona benzer ısı elde etmek. Aynı reaktörde 2017 yılında yapılan deneyde 102 saniye boyunca ısı yayan 50 milyon derecelik ısı elde edilmişti.
Nükleer Füzyon Nedir?
Nükleer füzyonun çalışma prensibi, iki ayrı hidrojen gazını, döteryum ve tritium, yaklaşık 100 milyon derece ısıya çıkararak, işlem sonrası oluşan plazmadan enerji elde etmek üzerine olup, fosil yakıtlara göre çok daha fazla enerji üretmesi, karbon salınımı olmaması ve güvenlik riski oluşturmaması gibi avantajları vardır.

Culham Füzyon Enerjisi Merkezi’nin açıklamasına göre nükleer füzyonla elde edilen bir kilogram yakıttan elde edilecek enerji, 100 milyon kilogram fosil yakıttan elde edilen enerjiye eşdeğer. Günümüz teknolojisiyle bu kadar yüksek ısılara birkaç dakikadan uzun süre dayanabilecek çekirdekler üretilemediği için, bilim insanlarının önündeki sorun, Güneş’in sıcaklığının üç katına, bir güç kaynağı olarak kullanılabilmesine izin verecek kadar dayanabilecek bir çekirdek üretmek.
Kaynak: https://radiichina.com/chinas-artificial-sun-just-hit-100-million-degrees-celsius-212-million-degrees-fahrenheit/

Devamını Oku

Bilim

Bilim İnsanları Güneş Enerjisini 18 Yıla Kadar Saklayabilecek Sıvı Bir Yakıt Geliştirdi

Yayınlandı

üzerinde

Ne kadar bol ve yenilenebilir olursa olsun, güneş enerjisiyle ilgili hala büyük bir sorun bulunuyor. Güneşin ürettiği enerjiyi depolayabilecek ucuz ve verimli bir sistem bulunmuyor. Güneş enerjisi endüstrisinin uzun bir süredir takıldığı ve ilerleyemediği bu alanla ilgili geçtiğimiz yıl içerisinde farklı çözümler ortaya kondu. İsveç’teki bilim İnsanları güneş enerjisini 10 yıldan daha uzun bir süre depolayabilen özel bir sıvı geliştirdi. MIT’de güneş enerjisi üzerine çalışan mühendis Jeffrey Grossman yaptığı açıklamada, Bir güneş paneli şarj edilebilir batarya gibidir.

Ancak elektrik yerine güneş ışığını devreye sokar ve ısıyı almayı isterseniz, talep üzerine tetiklenmektedir” açıklamasında bulundu. Bulunan sıvı Chalmers University of Technology’deki bilim insanlarının bir yıldan fazla bir süredir geliştirmek için uğraştığı sıvı formundaki bir moleküldür. Bu molekül karbon, hidrojen ve azottan oluşmaktadır. Güneş ışığıyla tetiklendiğinde bu molekül olağan dışı bir şey yapmaktadır. Molekülün atomları arasındaki bağlar yeniden düzenlenir ve bir izomer olarak isimlendirilen, enerjinin yeni bir versiyonuna dönüşür.

Bir tuzağa yakalanan av gibi, güneşten gelen enerji de izomerin güçlü kimyasal bağları arasında yakalanır ve molekül oda sıcaklığına soğuduktan sonra bile orada kalır. Enerjiye ihtiyaç duyulduğunda – gece veya kış mevsiminde – sıvı, molekülü orijinal formuna geri döndüren ve ısı formunda enerji veren bir katalizörden çekilir. Chalmers Üniversitesi’nden nanomateryalist bilim insanı KasperMoth-Poulsen , “ Bu izomerdeki enerji 18 yıla kadar saklanabilir ” diyor. Üstelik enerji çıkarıldığında ve kullanılmaya başlandığında umulandan daha büyük bir sıcaklık artışı elde edilmektedir. Üniversite binasının çatısına yerleştirilen enerji sisteminin bir prototipi, yeni sıvıyı teste tabi tuttu ve araştırmacılara göre sonuçlar çok sayıda yatırımcının dikkatini çekti.

Yenilenebilir, emisyondan arındırılmış enerji cihazı merkezde bir borulu içbükey bir reflektörden oluşur ve bu da Güneş’i bir çeşit uydu çanağı gibi izler.Sistem dairesel bir şekilde çalışır. Şeffaf borularla pompalama yapılmasının ardından sıvı güneş ışığı tarafından ısıtılır, norbornadien molekülü ısı tutucu izomer tarafındankuadrisiklona dönüştürülür. Sıvı daha sonra minimum enerji kaybıyla oda sıcaklığında saklanır. Enerjiye ihtiyaç duyulduğunda, akışkan, molekülleri orijinal hallerine geri döndüren sıvıyı 63 derece ile ısıtan özel bir katalizörden süzülür.Her şey planlandığı gibi giderse, Moth-Poulsen teknolojinin 10 yıl içinde ticari kullanıma açık olabileceğini düşünüyor.
Kaynak: https://www.sciencealert.com/scientists-develop-liquid-that-sucks-up-sun-s-energy

Devamını Oku

Bilim

Bilim insanları kilogramın tanımını değiştirmek için toplanıyor: Sabit ağırlık yerine kuantum

Yayınlandı

üzerinde

Yazan

Metroloji alanında çalışan 57 ülkeden bilim insanları kilogramın tanımını değiştirmek için Paris’te toplanıyor. Bir kilogramın bir kilogram olduğunu nasıl biliyoruz bunu hiç düşündünüz mü? Nasıl oluyor da “1 kg” dünyanın her yerinde aynı ağırlığa denk geliyor? Cevabı Fransa’nın başkenti Paris’te ısısı ve basıncı kontrol altında tutulan üç seviyede mühürlü bir laboratuvarın içinde bulunuyor. Son birkaç yıldır kilogramı tanımlayan şey; aynı zamanda dünyanın en yuvarlak nesnesi olan ve 2,15 x 10^25 adet silikon 28 atomuna sahip mükemmel küre şeklindeki bir cisim. Sadece bu kürenin yapımında kullanılan hammadenin değeri bile 1 milyon Euro ve binlerce saat işlenerek kusursuz bir küre haline geldikten sonraki değeri ise bunun çok ötesinde. Tüm metrik ağırlık birimleri bu cisme göre belirleniyor ve dünya standardı bu şekilde oluşuyor. Ne var ki, standart ağırlığı tanımlayan bu birim değişmek üzere. Metroloji alanında çalışan 57 ülkeden bilim insanları Versay’da buluşarak artık kilogramın somut bir cisim değil teorik bir denkleme sabitlenmesini oylayacaklar. Ancak oylama sadece bir formalite. Bununla ilgili bilimsel çalışmalar, araştırmalar ve tartışmalar çoktan yapıldı ve karar verildi. 
Kilogramı kuantum belirleyecek
Kilogram artık evrenin dokusunda yer alan temel bir sabit sayıdan türetilecek. Bunun için kuantum mekaniğinde yer alan ‘planck sabiti’ kullanılacak. Planck sabiti ise Foton enerjisi ile elektromanyetik dalga frekansının birbirine olan oranından elde ediliyor. Bu oran kuantum mekaniğinde aksiyonun temel birimi olarak da düşünülebilecek bir sabit. Bir ağırlığı dengelemek için gerekli olan plank sabitini gösteren Kibble adında elektromanyetik güçle ölçüm yapan son derece hassas bir aygıt kullanılacak. Biliminsanları önce kilogramın tanımlanmasını bu şekilde değiştirmeyi oylayacak daha sonra da çalışmalarda ortaya konan Planck sabiti değerini oylayacak ve bu değere Kibble’da karşılık gelen ağırlığı tüm zamanlar ve mekanlar için evrensel 1 kg olarak tanımlayacaklar. Böylece insanoğlu gelecekte hangi ortamda veya gezegende yaşarsa yaşasın tüm ölçüm birimlerini şaşmadan kullanmaya devam edebilecek. 
Kilogramın tarihçesi
İlk önce ağırlık biriminin tanımı 1793’te Antoine Lavoisier tarafından yapıldı ve 0.1 metre küp hacmindeki bir buzun erime derecesindeykenki ağırlığı olarak belirlendi. ‘Grave’ olarak anılıan bu ağırlık aynı zamanda 1 litre suyu da tanımlıyordu. Bu ölçünün de binde birine gram denildi. 1 Kg’ya da ‘Garve’ demek yerine bin adet gram anlamına gelen kilogram adı verildi. 1799’da 1 Kg’ın tanımı ilk kez değiştirilerek buzun 0 derecesinde değil 4 derece sıcaklıkta erimiş su halinin ağırlığı olması kararlaştırıldı. Ancak suyun yapısı yeterince istikrarlı değildi ve ölçümlerde kullanımı da pratikolmuyordu. Dolayısıyla bu suyun ağırlığına eşit saf platinden oluşan bir silindir yapıldı. Buna da ‘Arşiv kilogram’ denildi. Ancak 90 yıl sonra 1889’da bu materyal de güncellenerek platin ve iridyum karışımı bir silindir olarak belirlendi ve günümüze kadar da kullanıldı. Kg birimi üzerinde oynama yapılmadığından emin olmak için aralarında çok ufak farklılıklar olan 14 kopyası, farklılıklar kaydedilerek dünyada 14 farklı ülkeye gönderildi.

1948’de bu kopyalar ağırlıklarında değişim olup olmadığını ölçmek için ilk kez biraraya getirildi ve aynı şartlar altında korunmalarına rağmen zaman içerisinde hepsinin ağırlıklarının değiştiği gözlemlendi. 1990’da yeniden ölçülen kilogramların ağırlıklarının giderek daha fazla değiştiği (50 mikrogram) kaydedildi. Metrik olmayan diğer tüm ağırlık birimleri de kilograma göre belirlendiği için (0.453559237 kg’ın 1 pound olması kararlaştırılmıştır) kg’ın sabit kalması herkes açısından önemli bir konu. İçinde tutulduğu fanusların vakumlu ortamında ve tüm kontrol şartlarına rağmen bu değişim nasıl ve neden olduğu tam olarak çözülebilmiş değil ancak dünya sürekli tanımı değişen bir ‘standard birim’ kullanamayacağı için yeni formüller arandı. Silikon küre bu sorunu moleküler yapı ile çözdü ve ağırlığın ne olduğu sabit atom sayısına bağlandı.
Metre de benzer süreçler geçirdi sıra Kelvin ve Amperde 
Bir metre olarak bildiğimiz standart uzunluk birimi ilk olarak Kuzey Kutbu’ndan Ekvator’a kadar olan mesafenin 10 milyonda biri olarak tanımlandı. Ancak bugün vakumlu ortamda ışığın belli bir sürede kat ettiği mesafe ile tanımlanıyor. Işık değeri kelvin ve elektrik akım şiddeti amper için de benzer şekilde evrensel sabitler belirlenecek ve 20 Mayıs 2019’dan itibaren geçerli olacak. Bu farklılıklar metroloji dünyasının dışında insanların günlük hayatında hissedilmeyecek ancak bilimsel çalışmalar ve özellikle uzay projelerinde önemli olacak.
Kaynak: https://www.theguardian.com/science/2018/nov/09/in-the-balance-scientists-vote-on-first-change-to-kilogram-in-century

Devamını Oku

Öne Çıkanlar