fbpx
Bizi Takip Edin

Astrofizik

Paralel Evren: Bilinmezlik mi ? Gerçeklik mi ?

Yayınlandı

üzerinde

Paralel evrenler… Star Trek serisinde Kaptan Kirk ve Spock’u, Yıldızlarasında usta pilot Cooper’ı, Fringe dizisindeki birçok olayı veya DC karakteri Flash yani Barry Allen’ı yaşadıkları zaman ve mekan diliminden farklı yerlerde farklı durumlarda görmüşüzdür. Alternatif evrenlerin ve bu evrenlerdeki kopyalarımızın olabileceğine işaret eden paralel evrenler, aklımızdaki varoluşunu kozmoloji ve kuantum fiziğinden almaktadır. Yıllardır ortaya atılan paralel evren teorileri, bazı teorilerle (m teorisi, şişme teorisi vs.) bir araya getirildiğinde gayet mantıklı görünüyor. Sinema sektörünün eşsiz kaynağı, bilim insanlarının inanılmaz merakı ve bizlerin soru işareti olan paralel evren nedir ? Tarihsel kısma geçmeden önce paralel evren kabaca, bizlerin alternatif bir dünyada ancak aynı zaman diliminde başka işler yaptığı anlamına geliyor. Yani ben bu yazıyı yazarken alternatif evrendeki ben belki de sınavlara hazırlanıyordur veya başka bir işle meşguldür. Bu evrenlerin tamamı bizimki ile bağlantılıdır yani her biri bizim evrenimizden ve bizimki de başkalarından ayrılmış olabilir. Ayrıca paralel evrenlerdeki değişimler çok sansasyonel de olabilir. Mesela; bu paralel evrenler içinde tarihteki savaşlar bizim bildiğimizden daha farklı sonuçlanmış veya bizim evrenimizde soyu tükenmiş olan türler başka bir evrende evrimleşmiş ve adapte olmuş olabilir. Diğer yandan biz insanların nesli başka bir evrende tükenmiş de olabilir. Yani tam bir bilinmezlik. Bu tanımımızın ardından biraz tarihsel bilgilerle devam edelim. 1895 yılında çoklu evren terimini ilk kullanan isim William James olmuştur. Paralel evrenler ile ilgili teorilerin kaynağı Albert Einstein’ın fikirlerine dayanır. Ancak bu durumu fikrin ötesine taşıyan isim, 1954 yılında yaptığı çalışma ile Amerikalı matematikçi ve fizikçi Hugh Everett olmuştur. Everett, bizim evrenimize benzeyen başka evrenlerin var olabileceği tezini ortaya atmıştır. Onun mükemmel bir matematikçi ve üstün bir kuantumcu olduğunu hatırlatmak gerekir. Özellikle parçacık fiziği üzerine yaptığı çalışmalar bu alanda devrim niteliğindedir. Ama ne yazık ki yaşadığı dönemde paralel evrenler hipotezine başta Niels Bohr olmak üzere birçok büyük bilim adamı tarafından karşı çıkıldı. Bunun üzerine Hugh Everett hevesini kaybetti ve yöneylem araştırmaları üzerine yoğunlaştı. Peki Everett’in teorilerinin kaynağı neydi ? Hugh Everett atom altı seviyede elektron davranışlarını makro düzeyde kendi evrenimize uyarlayarak o dönemde tepki gören teorisini oluşturmuştur… Everett’ın ana düşüncesi, bir elektron kendi yörüngesinde aynı anda birden fazla konumda bulunabildiğine göre evrenimiz için de bu durum geçerli olabilir, tezine dayanıyordu. Ancak bazı bilim adamları, atom altı düzeyde gerçekleşen bu durumu makro düzeyde bilimsel bulmadılar. Hugh Everett bu yönde çalışmalarını bıraktı ama paralel evrenler hipotezi son bulmadı. Bu sefer başka evrenler olabileceği düşüncesinin temelini Einstein’ın görecelik teorisi oluşturmaya başladı. Bildiğimiz üç boyutun ötesinde dördüncü boyut olan zamanın göreceliği teorisi bilim dünyasında büyük çığır açmıştı. Bu teori Einstein’ın matematiksel ispatıyla sınırlı kalmadı, uydu yörüngelerindeki sapmalar uzayın zamanı büktüğünün yakın zamandaki ilk kanıtlarındandı. Bu durumda zaman farkı farklı evrenleri işaret ediyor olabilirdi. Bu evrende bugünü yaşarken başka evrenlerde geçmiş ve geleceğin farklı varyasyonları yaşanıyor olabilir. Aynı üç boyutta konumlanmış bitişik evrenler veya kesişen evrenler de görecelik teorisinin bir sonucu olarak görülebilir. Şimdi diğer teorilerle devam edelim… Özellike de Stephen Hawking’in neredeyse bütün hayatı boyunca çalıştığı Sicim ve M Teorileri de paralel evrenlerin varlığını güçlendiriyor. Kuantum fiziği ile görelilik teorisini birleştirerek her şeyin teorisini geliştirmeyi vaat eden sicim teorisine göre, evreni oluşturan temel parçacıklar tek boyutlu süper küçük sicimlerden meydana gelir. Sicim teorisinin güncel ve daha yüksek boyutlu versiyonu olan M teorisine göre ise, sicim teorisinin 11 uzay-zaman boyutundan göremediğimiz 7’si çok küçük ve kendi üzerine kıvrılmış durumdadır. Sicim teorisine göre, 11 boyutlu evrende, sicimleri düzenlemenin 10.500 yolu vardır; yani kainatta 10 üzeri 500 evren bulunur. Bunlardan biri yaşadığımız evrendir. Ve genellikle çoklu evren modellerinden bahseden fizikçiler sicim teorisini kastetmektedirler. Anlaşılması en rahat olan teorilerimizden birisi de Şişme Teorisi’dir. Alan Guth tarafından 1979 yılında geliştirilen şişme modeline göre, yaşadığımız evren kuantum fiziğindeki belirsizliklerden dolayı şişti ve ışıktan hızlı genişleyerek dağıldı.Şişme modeli, maddenin ve enerjinin evrene eşit bir biçimde dağıldığını savunur. Bu da büyük patlamanın bizim göremeyeceğimiz kadar uzakta devam edebileceğini gösterir. Yani, şişme modeli kainatta ışık hızından daha yüksek bir hızda ve uzaklıkta sonsuz sayıda evren olabileceğini savunur. Kısaca elimizde bir futbol topu var ancak o topun aynısından Brezilya’daki bir çocukta da var ama o çocuğun topu daha farklı kullanılıyor. Bir başka destekleyici kanıt, Zar Kozmolojisi’dir. Zar kozmolojisine göre; diğer evrenlerde birer kopyalarımız yoktur; ancak paralel evrenler mevcuttur. Yaşadığımız 4 boyutlu evren, en az 5 boyutlu kainatta dikey olarak dizilmiş sonsuz sayıdaki evrenden biridir. Paralel evrenlerin varlığını kanıtlayabilecek bir diğer yöntem ise kütle-çekim dalgalarını analiz etmektir. Paralel evrenler varsa; yaşadığımız evrendeki kütle-çekim dalgalarına çarpabilir ve yıldız ışığının polarizasyonunu değiştirebilirler. Bu da paralel evrenlerin varlığına dair bir kanıt olabilir.

Şimdi bir de işin sosyokültürel tarafına bir göz atalım. Felsefede, fizikte ve kozmolojide, her şeyi hesaplanabilir hale getirebilen tek zeki yaşam formunun homo sapiens olduğunu dikkate alan çok sayıda önermenin birleşimi Antropik İlke olarak adlandırılır. Antropik İlkeye göre, birden fazla evren varsa, onlar da bizimki gibi fizik kurallarına ve sabitlerine göre olmalıdır ve yaşam formları da bize benzemelidir. Bu doğrultuda; Stephen Hawking’ten Neil deGrasse Tyson’a kadar birçok ünlü bilim insanı, paralel evren kuramlarının bilimsel değil felsefi olduğunu savunur. Kesinliği olmayan ancak varlık ihtimali oldukça yüksek olan paralel evrenlerin dinsel ve sosyal boyutunun çok fazla olduğunu, bu sebeple de felsefi alanda yapılacak olan değerlendirmelerin daha doğru olduğunu düşünürler. Ancak bu isimlerin hemfikir olduğu bir konu varsa o da; paralel evrenlere yolculuğun imkansıza yakın olduğudur. Yani herhangi birimiz Barry Allen kadar zamanda hızlı koşamazsak veya uzayda zaman bükülmesi geçirmezsek halen daha olduğumuz kişiyiz.

Eğer gerçekten de paralel evrenler varsa ( şahsi fikrime göre var ) orada bir başkan, çok zengin bir yönetici veya kraliçe olmuş olabiliriz ancak şu andaki yaşam koşullarımızı da asla küçümsememeli ve hayata daima olumlu yaklaşmalıyız. Yazılarımızın altına ”paralel evrenlerle ilgili yazı yazarsanız…” yorumları gelmişti. Elde edilen bilgiler, kaynaklardan taranan ifadeleri birleştirerek bu konuyu size açıklamaya çalıştım. Zaman paradoksu ve zaman kayması ile ilgili diğer yazımızda görüşmek üzere.
Yazan: Kuzey Kılıç (@KuzeyGencc)
Kaynaklar: https://www.imdb.com/chart/top , https://www.space.com/32728-parallel-universes.html , https://tr.wikipedia.org/wiki/parallel-universe

Reklam Alanı
1 Yorum

1 Yorum

  1. Erman

    Aralık 14, 2018 at 11:02 am

    Cok dar dusunulmus
    Eger paralel evrene inaniyorsaniz sonsuz sayida su anda ayni yazismayi yapan paralel evren oldugunu dusunmelisiniz.
    Bu da yetmez sonsuz sayida yazisma yapmayani ve boyle sonsuz sayida ihtimali bulunan sonsuz evreni kabul etmeniz gerekir.
    Bununla beraber mitolijide gecen tum tanrilara da inanamak zorundasiniz cunku onlarda var olabilir.
    Yada bunlari kabul etmedem rahat rahat yaşarsınız:)

Yanıtla

E-posta hesabınız yayımlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir

Astrofizik

​Işık Hızından Daha Hızlı 4 Şey

Yayınlandı

üzerinde

Yazan

Evrenin başlangıcından beri var olmasına rağmen bilim insanlarını şaşırtmaya devam eden ışık, neredeyse bilinen tüm şeylerden daha hızlıdır. Sadece bir saniyede 299.792.458 km yol katedebilen (boşlukta, ilerlediği konuma göre hızı farklılık gösterebiliyor) ışık, sahip olduğumuz en gelişmiş araçlardan çok daha hızlı olmasına rağmen evrenin büyüklüğünde göz önüne alındığı zaman yavaş kalıyor. Bu nedenle ışıktan daha hızlı olabilecek şeyleri araştıran bilim insanları, bazı teorilere göre geçilmesi imkansız olan ışık hızını geçmeyi başarmış veya başarabilecek olan şeyler keşfetmişler.
Big Bang Evrenin başlangıcı olarak kabul edilen Big Bang, uzayın ışıktan çok daha hızlı bir şekilde genişlemesini sağlamıştır. Bazı bilim insanları bu genişlemenin ‘nothing can go faster than light’ (hiçbir şey ışıktan hızlı gidemez) sözüyle uyumlu olduğunu söyler. Big Bang ile genişleyen uzay, kütleye veya hacme sahip olmadığı için ünlü cümlede yer alan ‘nothing’dir (hiçbir şey). Bundan ötürü ışık hızını hiçbir şeyin aşamayacağını belirten teoriler Big Bang ile ters düşmez.

Işığın Görüntüsü  Bu çok ilginç bir tartışma konusudur. Bazı bilim insanları, ışığın görüntüsünün ışıktan çok daha hızlı hareket ettiği durumların olabileceğini söyler. Bu duruma örnek vermek adına elinde lazer olan bir adam ve A, B isimli 2 farklı gezegen hayal edelim. Adamın bulunduğu yer, A gezegeni ve B gezegeni birbirinden 100 ışık yılı uzaklıkta olsun. Son olarak da A ve B gezegenleri arasında dev bir platform olduğunu düşünelim (lazeri belli eden türden bir platform). Sabit bir konumda bulunan ve hiçbir şeyden etkilenmeyen lazerli adam, A ve B gezegenlerine lazeriyle ışık tutsun. İlk olarak A gezegenine ışık tutan adam, bir süre sonra B gezegenine lazer tutmak ister ve iki gezegenin arasında bulunan platform üzerinden lazerin ışığını yürüterek lazerini B gezegenine kaydırır. İşte olay bu noktada ilginçleşir. Sıradan bir bilek hareketiyle lazerini A gezegeninden B gezegenine, yani 100 ışık yılı uzağa kaydıran adam ışık hızını algısal olarak aşmayı başarmıştır. Adam, ışıktan daha hızlı hareket ettiği düşünülen ‘ışık görüntüsü’ sayesinde lazerinin anında B gezegenine vardığını görür ancak bu olay aslında sadece algılarında böyledir. Işığı oluşturan fotonlar ışık hızında ilerlerler. Lazer ne kadar hızlı şekilde, ne kadar çok döndürülürse döndürülsün, fotonların düştüğü konumlar lazerin A gezegeninden çıkarak platfomdan geçmesini ve B gezegenine ulaşmasını gösterecektir. A ve B gezegenlerinde bulunan gözlemciler de lazerin en fazla ışık hızında ilerlediğini görebilirler ancak ışık hızı asla aşılmaz.. Bazı bilim insanları ışık görüntüsünün de ‘nothing’ (hiçbir şey) olarak algılanması gerektiğini savunurlar çünkü ışık görüntüsü ne enerji, ne veri, ne de net bir bilgi taşıyabilir. Tüm bunlara rağmen ışık hızını aşmayı başarmak, bu sıralamada yer almak için yeterli.  (Videonun ilk 1 dakikasında ışık görüntüsü Ay üzerinden örneklenmiş)
Kuantum Dolanıklığı  Albert Einstein’ın ‘ürkütücü’ olarak nitelendirdiği kuantum dolanıklık teorisi, birbiriyle eşleşmiş olan iki farklı parçacığın birbirine bağlı şekilde hareket etmesidir. Örneğin ilk olarak iki elektronu yan yana getirelim. Birbirlerini etkileyecek olan elektronlar, bir süre sonra uyumlu bir şekilde hareket etmeye başlayacaklardır. Bu noktadan sonra elektronlardan birisini bulunduğumuz konumun milyonlarca ışık yılı uzağına yerleştirelim ve eşleşmiş olan elektronu titreştirelim. Titreşen elektronun eşi, çok uzakta olmasına rağmen gerçekleşen titreşim hareketini anında fark edecektir ve titreşim hareketinin tam tersini uygulayacaktır. Eşi aşağı doğru yöneliyorsa yukarı, sağa doğru yöneliyorsa sola, ileri doğru yöneliyorsa arkaya doğru hareket eden elektron, ışık hızından çok daha hızlı (bazı bilim insanları 10.000 kat daha hızlı olduğundan bahsediyor) şeylerin olduğunun en büyük kanıtlarından birisidir.
Solucan Deliği Uzay-zaman bütünlüğündeki kısa yol olarak adlandırabileceğimiz solucan delikleri, ışığın milyonlarca senede katettiği yolu sadece birkaç saniyeye indirgeyebilir. Bu nedenle belki solucan deliğinin değil ama solucan deliğinden geçen her şeyin ışıktan daha hızlı olduğunu söyleyebiliriz.

Devamını Oku

Astrofizik

Einstein, Uzay, Zaman ve İzafiyet Teorisi

Yayınlandı

üzerinde

Yazan

Hayatımızın her evresinde bulunan hiçbir zaman için bize yetmeyen ve nasıl geçtiğini anlamadığımız zaman nedir? peki zaman? Herkese göre farklı mı işlemektedir. Ya da Evrensel boyutta zaman algısı bizim anlayabileceğimizin çok daha üstünde bir durum mudur? İşte Bugün sizlerle birlikte çıkacağımız yolculukta uzay ve zaman kavramını ele alacağız. Bizim için zaman dediğimiz olay Dünyamızın kendi etrafında ve Güneş etrafında dönmesiyle ortaya çıkmış bir olgudur. Ne yavaşlaması mümkündür ne de hızlanması. Sabit bir şekilde Tüm insanlar için Aynı hızla ilerlemeye devam etmektedir. Ancak zaman olgusuna baktığımızda beynimizin bizimle bir oyun oynadığı da düşünülmektedir.  Görelilik Nedir ?: Şimdi hepimizin aklına gelen soru ise beynimizin zamanla ilgili oyunu bir de nasıl oynayabildiğidir. İşte bu oyun ya da aldatma olayını en güzel açıklama ise Einstein‘ın görelilik kuramını en sade dille anlatmaya yarayan söz cevaplayacaktır diye düşünmekteyim. Bir adam güzel bir kızla oturup bir saat geçirdiğinde, bu süre kendisine bir dakika gibi gelir. Bir de bu adamı 1 dakika için sıcak bir fırının üstü oturursanız, bu süre ona bir saatten uzun gelecektir. İşte görelilik budur. Demek ki bulunduğumuz yer mekân ve duruma göre zaman değişiklik göstermektedir. Ancak bu değişiklik zamanın akıp gitmesindeki hızında değildir. Kişinin hissetmesi ile alakalı bir durumdur. O zaman dünya üzerinde bulunan bizlerin yaşamış olduğu durumlara göre zaman algısı değişiklik göstermekte ise Evrensel boyutta zaman çok daha büyük farklılıklar gösterecektir. İlk olarak isterseniz zamanı nasıl ölçtüm bize bir göz atalım. Dünya üzerinde yaşayan uygarlıklar ve medeniyetler zamanı ölçmenin birçok değişik yolunu bulmuşlardır. Dünyanın kendi ekseni ve güneş etrafındaki dönüşünü ölçerek kendimize göre bir zaman algısı ortaya çıkartmaktır. Dünyanın kendi ekseni etrafında dönüşünü 24’e bölerek saat kavramını saatleri 60’a bölerek dakikaları, dakikaları da 60’a bölerek saniyeleri hesaplayabilmekteyiz. Yılları ve ayları belirlemek için de Dünya’nın güneş etrafındaki dönüşünü baz almaktayız. Yani dünyamızın bulunduğu güneş sistemindeki hareketlerine göre zamanı anlayabiliyor ve hayatımızı buna göre yönlendirebiliriz. Dünyanın kendi ekseni etrafındaki dönüşünü yavaşlatmaya da hızlandırma şansımız yoktur.  O zaman dünyada bulunan herkes için zaman aynı hızla akmakta diyebilir miyiz? Ancak zaman üzerinde yapılan çalışmalar ve araştırmalar bizlere zamanın aynı hızda aktığını, ama hissetme olayının kişilere göre değişiklik gösterdiğini söylemektedir. Örnek vermek gerekirse; hepimiz çok iyi biliriz ki çocukken Sokağa çıktığımızda ve arkadaşlarımızla oyunlar oynadığımızda gün bitmek bilmezdi, ama şimdi öyle mi? Hayır zamana yetişemiyoruz. Gün yetmiyor. Bu konuda hemen aklınıza yapacak işlerimizin çoğaldığı ve sorumluluklarımızın arttığı gelebilir. Benim de aklıma gelen olay bu ama yapılan araştırmalar sonucunda ortaya atılan bir teori bunun yapılacak işler ile alakası olmadığını bizlere anlatmaktadır.  Ortaya atılan bu teori de zamanın akış hızının yaşımızın karekökü ile birlikte arttığını söylemektedir. Yani 10 yaşındayken zamanın akış hızı 1 dir. 20 yaşındayken zamanın akış hızı 1.14 dur. 60 yaşındayken zamanın akış hızı 2.44 dur. Yani 60 yaşındaki biri için 10 yaşındaki birine göre zaman yaklaşık iki buçuk kat daha hızlı artmaktadır. Burada aklıma gelen bir kısa bilgi sizlerle hemen paylaşmak istiyorum. Zamanı en iyi ve en doğru şekilde ölçen Sezyum atomunun titreşmesidir. Sezyum atomu saniyede yaklaşık olarak 9 milyar kere titreşmektedir. O zaman eğer insan hücreleri ve atomlar arasında bir bağ varsa ve hücrelerin yaşlanması sonucunda titreşimlerin de değişiklikler oluşuyorsa, yaşlanınca zamanın hızlı atması İle bağlantılı olabilir.  Einstein uzay ve zamanın birbirine bağlı olduğu uzay zaman kavramında bizlere ne anlatmak istemiştir. Einstein’ın bizlere anlatmak istediği kütle çekim etkisinin zamanı etki edebileceğidir. Yani Kütle çekimi zaman yavaşlatabilir ya da hızlandırabilir demiştir. Einstein’a göre Kütle çekimi ne kadar güçlüyse zaman o kadar yavaşlar ve bunun için en büyük örnekte kara deliklerdir. Şimdi bir karadelik düşünelim. Birde Uzay gemimiz var. Uzay gemimizle birlikte karadeliğin olay ufkuna yanaşarak çekimine kapılmadan etrafında döndüğünü hayal edelim. Ancak gemide bulunan bizlerin bir ikizi de dünyada bulunuyor olsun. Karadeliğin etrafında dönerken bizim için zaman çok yavaş akacaktır. Kalbimiz daha yavaş atacaktır. Hücrelerimiz bile daha yavaş yaşlanacaktır. Hatta metabolizmamız bile yavaşlayacaktır. Ancak bu durum bizler için hiçbir sorun yaratmayacak. Sanki her şey normalmiş gibi gemide hayatımızı sürdürüyor ve zaman normal bir şekilde atıyor diye hissedeceğiz. Kara deliğin etrafındaki dönüşünü tamamlayıp dünyaya geri döndüğümüzde dünyada bulunan ikizlerimizin, bizden çok daha fazla yaşlandığını fark ederiz. Bu yaşlanma farkı, bizim kara deliğin kütle çekiminde ne kadar kaldığımızda orantılı olarak artış gösterecektir. Ayrıca yanında bulunduğumuz karadeliğin kütle çekiminin gücü de zamanın akma hızında etkili olacaktır. Yani dünyada bulunan ikizlerimiz için zaman hızlı akarken bizim için çok daha yavaş atacaktır. Bu olay ile ilgili olarak ortaya atılan bir Paradoks vardır ve bu paradoksun adı da ikizler paradoksu dur. Ancak bu paradoksla ışık hızı ve zaman olgusu bizlere anlatılmaktadır.  Ali ile Ayşe iki kardeş aynı gün aynı saatte doğdular. İkisi de yaşamlarını dünyada sürdürüyorlar. Ama bir gün biz Ayşe’yi Bir Uzay aracına bindirip ışık hızının yüzde 90 hızında uzaya gönderelim. Ali de bizimle birlikte dünyada kalsın. Hayatına devam etsin. Işık hızının yüzde 90 hızında yolculuk yapan Ayşe 5 yıl sonra dünyaya geri döndüğünde, Ayşe’nin saati dünya saatinin sadece yüzde 44’ü hızında işlemiş olacaktır. Yani dünyada bulunan Ali için geçen her 100 saniye Ayşe için 44 saniye olarak geçecektir. Peki, Ayşe’yi ışık hızının yüzde 99’luk bir hızın da tekrar uzaya yollarsak; O zaman dünya saatinin sadece yüzde 14’ü hızında zaman işleyecektir. Bu da ne demektir? Dünyadaki 100 saniyeye uzaydaki Ayşe için 14 saniye olacaktır. Küçük bir hesapla ile, Ayşe bu hızla uzayda 7 yıl geçirdiğinde, dünyada bulunan Ali için 50 yıl geçmiş olur. Hızı biraz daha arttırıp ve ışık hızının yüzde 99,9 luk hızında bir yolculuk yaptırırsak, Ayşe’ye göre zaman dünya saatinin sadece yüzde 4,5’i hızında geçecektir. Yani dünyadaki 100 saniye Ayşe’ye 4,5 saniye olarak yansıyacaktır. Ayşe ışık hızının yüzde 99,9 luk hızında da uzayda 5 sene yolculuk yapıp dünyaya geldiğinde, kardeşi 110 yıl geçirmiş olacaktır. İşte ikizler paradoksu bizlere Işık hızı uzay ile zaman arasındaki ilişkiyi anlatmaktadır. Bu farkları bizler Evrensel boyutta anlayabilmekteyiz. Dünyamızda bu denli büyük farkları anlama şansımız yoktur. Ancak yere yakın bulunan yerlerde yerçekimi daha fazla olduğundan dolayı 1. katta yaşayan birine göre gökdelenin 200. katında yaşayana zaman çok daha hızlı akacaktır. Peki Bizler bir şekilde ışık hızında hareket etseydik ne olurdu bunu hiç düşündünüz mü? Işık hızı evrende bulunan tek değişmeyen sabit bir hızdır. Saniyede yaklaşık olarak 300.000 kilometre diyebiliriz.  Bu hızda sabit şekilde hareket etseydik zaman bizim için dururdu. Yani zaman olmazdı. Belki başka boyutlara geçerdik.  Bunun cevabını şu anda kimse bilmemektedir. Ancak burada ortaya konan değişik ve kafa karıştıran bir soru bulunmaktadır. Işık hızında hareket ederken zaman duruyorsa ve ışık hızından daha büyük hızlar varsa ve bizler ışık hızından daha yüksek hızlarla hareket edebilirsek o zaman, zamanda geriye mi gideceğiz? Yani Geçmişe Yolculuk Mu yapacağız? Maalesef bu sorunun cevabı bilinmemektedir. Ancak tokyonlara bakıldığında ve takyonların hızı ele alındığında, o zaman geçmişe yolculuk yapamayacağız ama çok hızlı bir şekilde milyonlarca Işık hızını aşıp başka galaksilere ulaşabilirsek, o zaman oradan geçmişi görüntüleme şansımız olabilir diye de düşünülmektedir. Bildiğiniz üzere Bize en yakın olan Galaxy Andromeda galaksisidir. Eğer oradan dünyayı izleyebilecek bir teknolojimiz olmuş olsaydı, dünyamızın 2 milyon yıl önceki halini görüyor olacaktık. İsterseniz şimdi İzafiyet teorisine bir göz atalım. İzafiyet Teorisi, özel görelilik ve genel görelilik olmak üzere ikiye ayrılmaktadır. Özel görelilik Kuramı 1905’te, genel görelilik kuramı ise 1916 yılında ortaya koymuştur. Peki, özel ve genel olanlarını birbirinden ayıran fark nedir? Özel görelilik kuramı, sabit hızla hareket eden olayları incelerken, genel görelilik kuramı, hızı değişerek hareket eden olayları incelemektedir. Bilim adamları Birçok araştırma yapmakta ve yeni atılımlara imza atmaktadırlar. Son zamanlarda ise ışık hızına ulaşmak adına birçok çalışma yapılmaktadır. Ancak ışık hızı evrende bulunan en yüksek hız olarak bilinmekte ve aşılması imkânsız olarak düşünülmektedir. Hatta bu konu ile ilgili herkes tarafından çok sorulan bir soru da bulunmaktadır.   Eğer bir gün ışık hızında gidebilecek bir arabamız olursa ve yaklaşık saatte 300.000 kilometre hızla giderken farlarını yakarsa ne olur? Sorusudur. Bu soruda kafa karıştıran olgu, ışık hızında giden bir arabanın farları yandığında ışığın öne doğru ilerleyeceği ve arabadan daha önce bulunacağı, bu nedenden dolayı da aşılmaz denen Işık hızından daha hızlı bir şekilde ilerleyeceği düşünülmektedir. Her ne kadar içinden çıkılmaz bir paradoks olarak gözükse de, özel görelilik kuramı, bu soruya çok basit bir cevap vermektedir. Görelilik kavramı ilk olarak 16 yüzyılda Galileo tarafından ortaya atılmıştır. Daha sonra Newton bu kuruma, hareket yasalarına göre ve uzay zamana göre açıklamaya çalışmıştır. Ancak 19. yüzyıla gelindiğinde, Newton fiziğinin bazı olayları açıklayamadığı gözlemlenmekteydi. Açıklanamayan bu olayların üzerine Albert Einstein özel görelilik kuramına geliştirmiştir. Özel görelilik kuramı sezgisel olarak algılayamadığımız olayların ancak deneylerle kanıtlanabilmesidir. Mesela otobanda saatte 100 kilometre hızla giden bir araç düşünelim ve hemen yanında, bir de saatte 20 kilometre hızla giden bir araç olsun. Saatte 20 kilometre hızla giden araçtan bakan biri, saatte 100 kilometre hızla giden aracı gördüğünde kendisinin hareket etmediğini hissedecektir ve diğer aracında saatte 80 kilometre hızla gittiğini varsayacaktır. Başka bir örnek verecek olursak, dünyamızın dönüş hızı saatte 16.744 kilometredir. Ama biz dünyayı duruyor gibi hissederiz. Yani sezgisel olarak bunu algılayamayız. Özel görelilik günlük yaşantımızda algılayamadığımız, zamanın göreli olduğunu, sezgisel olarak hissettiğimiz zamanın ise, mutlak olduğunu bizlere söyler. Ayrıca özel görelilik kuramı zaman mekân ve hareketlerin birbirinden bağımsız olmadığını, hatta hepsinin birbirine bağlı olduklarını ayrı ayrı düşünülmemesi gerektiğinden de bahsetmektedir. 1905 yılında Einstein tarafından ortaya atılan özel görelilik kuramının bizlere anlatmak istediklerinden bazı sana bakacak olursak;
Işık hızı limiti: Eğer bir cisim ışık hızına ulaşırsa kütlesi sonsuz olur. Ancak sonsuz kütlesi olan bir cismi ışık hızında tutabilmek için sonsuz bir enerjiye ihtiyaç duyulmaktadır. Bu yüzden dolayı kütleli cisimler asla ışık hızına ulaşamazlar. En iyimser şekilde düşünüldüğünde bile ancak ışık hızına yakın hızlara ulaşabilirler. Boşlukta ilerleyen ışığın hızı asla geçirmez. Işık hızı evrendeki son hız limitidir. Işıkta bir kütleye sahip olmadığından dolayı, ışık hızında yolculuk yapabilmektedir.  Uzay ve zaman: Uzay ve zamanın birbirinden farklı iki kavram gibi gözükse de birbirleri ile ilişkilidir. Zaman genişlemesi lorentz dönüşümü, durağın halde bulunan bir gözlemcinin hissettiği zaman, ışık hızına yakın hareket eden bir cismin içinde bulunan başka birine göre daha kısa görünür. Bu kısalma miktarı cismin yapmış olduğu hıza bağlıdır. Eğer ışık hızına varılırsa uzunluk dışarıdan gözlemleyen birine göre sıfır olarak görülecektir. Ama cismin içindeki kişiye bu normal gözükmektedir. Kütle artışı, ışık hızına yakın hızda hareket eden bir cismin kütlesi artar. Işık hızına ulaştığında kütle sonsuz olur. Dışarıdan gözlenen bu kütle artışı cismin içinde bulunan kişi için aynı kalacaktır. Yani kütlenin arttığını hissetmeyecektir.
E=mc2?: Bu denklemde E enerjiyi, M kütleye, C2 ise ışık hızının karesini temsil eder. Denkleme göre madde enerjiye, enerjide maddeye dönüşebilir. Ortaya atılan birçok öngörü bulunmaktadır. Ama bu sizlere bahsettiğim öngörüler, en önemlileridir. Yapılan araştırmalar ve deneyler sonrasında bu öngörülerin doğruluğu 1905 yılından günümüze kadar bize bir çok kez doğrulanmıştır. Mesela yapılan deneyler den birinde çok hassas atom saatleri taşıyan uçaklar değişik yönlere ve değişik yerlere değişik hızlarda yolculuk yapmışlar ve saatlerini duruma göre hızlandığı ya da yavaşladığı görülmüştür. Cern’de yapılan deneylerde, parçacık hızlandırıcılarındaki, hızlandırma işlemi sonrasında, kütlesi olan hiç bir cismin atom ya da elektron hızına çıkamadığı gözlemlenmiştir. Yani hız arttıkça Kütlesi artmış, istenilen hızlara ulaşamamıştır.  Güneşten dünyamıza, ışık hızının yüzde 99.5’i kadar bir hızla gelen nötrinoların ömürlerinin dünyada bulunan diğer nötrinolardan çok daha uzun oldu da gözlemlenmiştir.  Biraz önce sormuş olduğumuz sorunun cevabına bakacak olursak; Işık hızında hareket eden arabamız, sabit bir hızla hareket etmektedir ve arabanın farları açıldığında ne olacağı, aracın içindeki kişiye ve dışarıdan gözlemleyen kişiye göre değişiklik gösterecektir. Yani iki farklı sonuç elde edeceğiz demektir. Işık hızında hareket eden arabanın içindeki kişiye göre cevaplayacak olursak; Işık hızında, yani saatte yaklaşık 300000 kilometre hızla seyreden araba sabit bir hızla bittiğinden dolayı farları açacak olursak bile sadece önümüzü aydınlandığını görürüz. Dışarıdan gözlemleyen kişinin önünden ışık hızında geçen araba eğer farlarını yakacak ve öyle geçecek olursa, farların arabanın önünü aydınlatmadığını görürüz. Çünkü farlardan çıkan ışık araç ile aynı hızla gidiyor olacaktır. Dolayısıyla farlardan çıkan ışık dışarıdan gözlemleyen kişiye göre asla arabanın önünde gitmeyecektir. İzafiyet teorisinin 2. ayarla baktığımızda genel görelilik kuramını görmekteyiz. Ancak bugün sizlere genel görelilik kavramı hakkında çok kısa bir bilgi vereceğim. Genel görelilik kuramı, özel görelilik kuramından farklı olarak hızı değişerek hareket eden olaylarla ilgilenir. Ayrıca karadeliklere ve genişleyen evren modellerini de bizlere açıklayan önemli bir teoridir. Genel Görelilik, Newton’un Evrensel kütle çekim yasası ile özel göreliliğin genişletilerek, kütle çekim uzay-zaman veya uzay ya da uzay ve zamandaki etkilerinden bahsetmektedir.  Ayrıca süpernova patlamaları ile oluşan Kara deliklerin nasıl oluştuğu da genel Görelilik prensiplerine dayanmaktadır. Genel Görelilik Kuramı kütle çekiminin zamanı olan etkisine de çözüm getirmektedir. Uzayın bir çarşaf gibi gergin olduğunu düşünelim ve bu çarşafın üzerine 2 adet portakal koyalım. Bu koyduğumuz 2 portakalın bir şekilde birbirine yaklaştığını gözlemleyeceğiz. Ancak bu iki portakalın birbirine yaklaşmalarındaki neden birbirlerini uyguladıkları kütle çekim kuvveti değildir. Birbirlerine yaklaşmalarındaki neden, çarşafı bükmelerinden kaynaklanmaktadır. İşte bu şekilde uzayda bulunan iki gök cismi de birbirlerine uzay ve zamanı bükerek yaklaşırlar. Hatta bu uzay bükülmesinden dolayı birbirlerine yatay doğru da giden ışıklarda bükerler. Bu olay bizlere yerçekiminin bir kuvvet olmadığını ortaya koyar. Newton’in kuvveti esas alan kütle çekim kuramı da burada geçerliliğini kaybetmiş olur. Evrende oldukça fazla gök cismi bulunmaktadır. Ve bu cisimlerin her biri üzerinde bulundukları uzayı bükerek birbirlerini çekmekte ve kendi eksenleri etrafında dönerken uzayı da, zamanı da bükmektedirler. Hatta Bilim adamları bu teoriden yola çıkarak, yapmış oldukları araştırmalar sonucunda, dünyamızın bir yıl içerisinde 2 metrelik sapma gerçekleştirdiğini de tespit etmişlerdir. Genel Görelilik Kuramı bu şekilde kısaca anlatılacak bir teori değildir. Ancak hazırlamış olduğumuz bu makalede, genel görelilik kuramı konusunda sizlere ufak bir giriş yaparak, ufak bir bilgi vermeye çalıştık.
Kaynak: https://www.space.com/17661-theory-general-relativity.html , https://www.space.com/36273-theory-special-relativity.html

Devamını Oku

Astrofizik

Astrofizikçiler, Dünya dışından gelen yüksek enerjili sinyali tespit etti

Yayınlandı

üzerinde

Yazan

Rusya Ulusal Nükleer Araştırmalar Üniversitesi’nden (MEPhI) bilim insanları dahil olmak üzere uluslararası araştırmacılardan oluşan bir ekip, Fermi Gama ışını Uzay Teleskobu’nun elde ettiği verileri incelerken yüksek enerjili galaksi fotonlarından gelen bir sinyal belirledi. ‘Physical Review-D’ dergisinde yayınlanan bu keşif, daha önce Amundsen-Scott Güney Kutbu İstasyonu’ndaki IceCube Nötrino Gözlemevi’nde görevli bilim insanları tarafından tespit edilmiş olan yüksek enerjili nötrinoların kaynağına ışık tutabilir. Yakalanması zor olan yüksek enerjili nötrinolar, diğer maddeyle nadiren etkileşime girerek milyarlarca ışık yılı mesafesine engelsiz seyahat eder. Yüksek enerjili nötrinolar, Dünya’da tespit edilmeden önce neredeyse ışık hızında 3,7 milyar yıl seyahat etti. Bu, kökeni bilim adamları tarafından tanımlanabilen diğer tüm nötrinolardan daha uzaktır.

Tespit Edilen Sinyal, 300 Elektron Volttan Fazla
Fransa, Norveç ve İsviçre’deki üniversitelerden araştırmacılar ile ortak çalışmalar yapan Rusya Ulusal Nükleer Araştırmalar Üniversitesi’nden (MEPhI) bilim insanları, Fermi Uzay Teleskobu’nun elde ettiği yüksek enerjiye (300 elektron volttan fazla) sahip olan Gama ışını verilerini incelediğinde Gama ışını akışında kaynağı bilinmeyen bir unsuru tespit etti. Söz konusu araştırma yürüten bilim insanlarından MEPhI Profesörü Dmitriy Semikoz, konuyla ilgili yaptığı açıklamada şunu söyledi:
Galaksimizin Bir Yerinde Olmalı
“Galaksimizin dışındaki kaynaklarda 300 elektron volttan fazla enerji söz konusuysa elde edilen sinyallerin, Gama ışınının galaksiler arası ortamın içine çekilmesi nedeniyle çok zayıf olabileceği muhtemel. Öte yandan gama ışınlarının galaksimize hemen hemen hiç çekilmediğini düşünürsek, tespit edilen yeni unsurun galaksimizin bir yerinde olması gerek”.

Yeni unsurun daha önce IceCube Gözlemevi’nde tespit edilmiş yüksek enerjili nötrino akışı ile uyum içinde olduğuna dikkat çeken Semikoz, bunun aynı kaynaktan geldiğini kanıtladığını savundu. Şu an itibariyle Rusya’daki Baykal Gölü’nün dibinde bir kilometreküplük alanda ‘Gigaton Water Detector’ isimli su altı nötrino teleskobunun kurulma çalışmaları sürüyor. 2020 yılına doğru Baykal’daki teleskobun etkinlik açısından Antarktika’da bulunan IceCube Nötrino Teleskop Laboratuvarı ile aynı seviyeye ulaşması bekleniyor.
Kaynak: https://eng.mephi.ru/news/120218

Devamını Oku

Öne Çıkanlar