fbpx
Bizi Takip Edin

Fizik

Zaman: Kırılma ve Akış Yönü

Yayınlandı

üzerinde

Hayatımız boyunca hem olumlu hem de olumsuz bir çok durumla karşılaşırız. Çoğu yılımız koşuşturma ve yaşam mücadelesi ile geçer. Ancak bir süre sonra durup düşünmeye başlarız ve, ”Ben bu kadar uğraştım. Karşılığında ne elde ettim ? Bunu neden yaptım ?” sorularını sorarız. İşte bu soruya vereceğimiz cevap olumsuz ise o an, geçmişe gidip bazı durumları düzeltmek isteriz. Bu yazımızda da şiirsel olarak anlatmaya çalıştığımız bu durumu bilimle kaynaştıracak ve ihtimaller, yasalar üzerinden giderek zamana değineceğiz.  Zaman kırılması denilen olayı çok basit bir örnek ile anlatabiliriz. Bir zaman makinenizin olduğunu varsayın ve o makine ile geçmişe gidiyorsunuz.   Geçmişe gidip herhangi bir otobüse biniyorsunuz ve o otobüse binen son kişi de sizsiniz. Dışarıda kalan tek yolcu, otobüse binebilseydi orada yolculardan birisi ile tartışacak ve ardından fenalaşıp hayatını kaybedecekti. Ancak öyle olmadı ve o yolcu başka bir otobüs ile sorunsuz bir şekilde gitti. İlerleyen günlerde o yolcunun kullandığı araba bir başka insana çarpıyor ve çarptığı insan ölüyor. Bunun sonucunda ölen kişinin ailesi de sürücüyü öldürüyor. Ve etkiler dalga dalga yayılıyor… Halbuki siz geçmişe gitmeyip normal akışa müdahale etmeseniz yalnızca bir kişi ölecek, akış devam edecekti. Daha basit bir örneği The Flash karakteri üzerinden de rahatlıkla anlayabilirsiniz. Tabii ki burada bahsettiğimiz durum çok ütopik bir olay. Elbette pratik olarak zamanda geçmişe gidemeyiz. Çünkü solucan deliklerinin varlığı -birkaç teori dışında- henüz kanıtlanamadı. Ancak zaman kırılması tam da bu demek. Yani geçmişe ya da geleceğe giderek bir akışı bozmak bunun sonucunda da ”anakronizm” denilen durumları yaratmak. Şimdi bir başka konumuzu inceleyelim; zaman neden geleceğe gidiyor ? Aslında bu paragrafı kabaca Herakleitos’un, ”Aynı nehirde iki kez yıkanılmaz.” sözü ile özetleyebiliriz ancak olaylara biraz daha bilim penceresinden bakacağız. Zamanın daima ileriye aktığı bilinen bir durum. Bebek olarak doğuyoruz, ardından yıllar geçtikçe yaşlanıyor ve sonunda ölüyoruz. Yukarıda bahsettiğimiz gibi geçmişe dönüp belli durumları değiştiremiyoruz. Ayrıca geleceği de bilmiyor, sadece geçmişi hatırlıyoruz ve her türlü durumu kabul ederek adeta önümüzdeki maçlara bakıyoruz. Öte yandan -birçok durumda olduğu gibi- insanların sezgisel olarak kabul ettiği bu gerçeği fizik kanunları çerçevesinde kabul etmek çok zor. Çünkü fizik yasaları zaman gelecekten geçmişe aksa da hiç değişmeden işlemeye devam ederdi. Her ne kadar akan suyu tekrara geri getiremesekte veya Benjamin Button gibi yaşlı doğup genç ölmesek de fizik yasalarında zamanın daima ileriye aktığını gösteren bazı ipuçları bulunuyor. Bu durumun temelinde ise bir dahinin çalışması yatıyor. Einstein’ın geliştirdiği görelilik teorisi, zamansal kavramlarda ilginç soru işaretlerine yol açtı. Fizik yasalarının evrende genel geçer olması için zamanda da simetrik olması gerekiyor. Düşünün, fizik yasaları zaman geçmişe akınca değişiklik gösterseydi biz doğmadan önce evrendeki fizik kurallarının farklı olması gerekirdi. Bu duruma göre evreni oluşturan büyük patlama anından günümüze kadar süregelen 13 milyar 780 milyon yılda ne gibi değişimler olduğunu, galaksiler, yıldızlar ve gezegenlerin nasıl oluştuğunu asla bilemez veya bu yazıyı asla yazamazdık. Asıl mesele de zamanın neden geçmişe akmadığını göstermek. Çünkü evrenin büyük patlama anında mükemmel bir düzen ilebaşlayıp düzensizliğin zamanla arttığını biliyoruz. Evrenin neden süper düzenli olarak başladığını ve neden zamanla düzensiz bir hal aldığını bilmiyoruz. Fizikteki en büyük gizem de bu ve zamanın oku bize bunun nasıl olduğunu gösterecek.

Zamanın terse akmadığını gösteren bazı teoriler daha doğrusu görüşler var. İlk ve en popülerlerinden birisi büyükbaba paradoksudur. Bu paradoksa göre, büyükbabanızı öldürseydiniz babanız hiç doğmazdı. O zaman siz de doğmaz ve geçmişe gidip büyükbabanızı öldüremezdiniz. İkinci ipucu ise termodinamik yasa ve kuantum fiziği. Enerjinin tamamını işe dönüştürmemiz tabii kide imkansız bir durumdur. Enerjinin tamamını işe dönüştüremeyiz, öyleyse işin tamamını da enerjiye dönüştürüp zamanı geriye saramayız. Yere düşünce kırılan bardağın kendiliğinden birleşmemesinin sebebi de böylelikle ortaya çıkmış oluyor. Zamanın okuna dair bugüne dek elimizdeki en güçlü kanıt olan termodinamik yasalarının nasıl işlediğini ise kuantum fiziği gösteriyor. Kuantum verilerinin termodinamik veriler ile örtüşmesi ve Heisenberg’in belirsizlik ilkesi, enerji-zaman-iş bağlamında zaman akışının yönünü belli ediyor. Bunlara ek olarak Joan Vaccaro tarafından gerçekleştirilen büyük bir çalışma da zaman okunun hangi yönde olduğunu gösteriyor. Vaccaro, bazı atomaltı parçacıkların bozunarak başka bir parçacığa dönüşme sürecini gözlemledi ve bu sürecin zamanda simetrik olmadığını buldu. Yani; K ve B bozonları (yukarı-aşağı kuark birleşmesi ile oluşur) zaman geleceğe aktığında farklı şekilde bozunuyordu ve evren de zaman geçmişe aksaydı daha farklı şekilde bozunacaktı. Bu çalışma ile birlikte, K ve B mezonlarının zamanda asimetrik olarak bozunduğunu gösteren formülleri kuantum fiziğine ekleyince zamanın ileri aktığını gösterebildi. Yani büyükbaba paradoksu, kuantum fiziği, termodinamik yasa ve bozon süreçleri bize zamanın neden geleceğe aktığını gösteriyor.

Belki de gerçekten pratik olarak zamanda geriye gidebilir ve hatalarımızı düzeltebiliriz. Bunu yaptığımızda günümüzü daha rahat kılacağımızı ve olumsuzlukları geride bırakacağımızı düşünürüz. Belki de zamanın oku gerçekten de geriye akıyordur ve aslında gerçek hayatta biz Benjamin Button konumundayız. Ancak gerçek olan bir şey varsa; zaman ileriye veya geriye daima akacak ve hepimiz için sonlanacak. Yani zaman makinesi üretmekle vakit kaybedeceğimize geleceğimizi düzene sokabiliriz. Benjamin Frankin’in de dediği gibi, ”Hayatınızı seviyorsanız, zamanınızı boşa geçirmeyiniz; çünkü zaman hayatın ta kendisidir.”
Yazan: Kuzey Kılıç (@KuzeyGencc)
Kaynaklar: http://www.ict.griffith.edu.au/joan/ , https://www.pbs.org/wgbh/nova/article/can-you-really-go-back-in-time-by-breaking-the-speed-of-light/ , http://mentalfloss.com/article/59040/10-mind-boggling-paradoxes

Astrofizik

​Işık Hızından Daha Hızlı 4 Şey

Yayınlandı

üzerinde

Yazan

Evrenin başlangıcından beri var olmasına rağmen bilim insanlarını şaşırtmaya devam eden ışık, neredeyse bilinen tüm şeylerden daha hızlıdır. Sadece bir saniyede 299.792.458 km yol katedebilen (boşlukta, ilerlediği konuma göre hızı farklılık gösterebiliyor) ışık, sahip olduğumuz en gelişmiş araçlardan çok daha hızlı olmasına rağmen evrenin büyüklüğünde göz önüne alındığı zaman yavaş kalıyor. Bu nedenle ışıktan daha hızlı olabilecek şeyleri araştıran bilim insanları, bazı teorilere göre geçilmesi imkansız olan ışık hızını geçmeyi başarmış veya başarabilecek olan şeyler keşfetmişler.
Big Bang Evrenin başlangıcı olarak kabul edilen Big Bang, uzayın ışıktan çok daha hızlı bir şekilde genişlemesini sağlamıştır. Bazı bilim insanları bu genişlemenin ‘nothing can go faster than light’ (hiçbir şey ışıktan hızlı gidemez) sözüyle uyumlu olduğunu söyler. Big Bang ile genişleyen uzay, kütleye veya hacme sahip olmadığı için ünlü cümlede yer alan ‘nothing’dir (hiçbir şey). Bundan ötürü ışık hızını hiçbir şeyin aşamayacağını belirten teoriler Big Bang ile ters düşmez.

Işığın Görüntüsü  Bu çok ilginç bir tartışma konusudur. Bazı bilim insanları, ışığın görüntüsünün ışıktan çok daha hızlı hareket ettiği durumların olabileceğini söyler. Bu duruma örnek vermek adına elinde lazer olan bir adam ve A, B isimli 2 farklı gezegen hayal edelim. Adamın bulunduğu yer, A gezegeni ve B gezegeni birbirinden 100 ışık yılı uzaklıkta olsun. Son olarak da A ve B gezegenleri arasında dev bir platform olduğunu düşünelim (lazeri belli eden türden bir platform). Sabit bir konumda bulunan ve hiçbir şeyden etkilenmeyen lazerli adam, A ve B gezegenlerine lazeriyle ışık tutsun. İlk olarak A gezegenine ışık tutan adam, bir süre sonra B gezegenine lazer tutmak ister ve iki gezegenin arasında bulunan platform üzerinden lazerin ışığını yürüterek lazerini B gezegenine kaydırır. İşte olay bu noktada ilginçleşir. Sıradan bir bilek hareketiyle lazerini A gezegeninden B gezegenine, yani 100 ışık yılı uzağa kaydıran adam ışık hızını algısal olarak aşmayı başarmıştır. Adam, ışıktan daha hızlı hareket ettiği düşünülen ‘ışık görüntüsü’ sayesinde lazerinin anında B gezegenine vardığını görür ancak bu olay aslında sadece algılarında böyledir. Işığı oluşturan fotonlar ışık hızında ilerlerler. Lazer ne kadar hızlı şekilde, ne kadar çok döndürülürse döndürülsün, fotonların düştüğü konumlar lazerin A gezegeninden çıkarak platfomdan geçmesini ve B gezegenine ulaşmasını gösterecektir. A ve B gezegenlerinde bulunan gözlemciler de lazerin en fazla ışık hızında ilerlediğini görebilirler ancak ışık hızı asla aşılmaz.. Bazı bilim insanları ışık görüntüsünün de ‘nothing’ (hiçbir şey) olarak algılanması gerektiğini savunurlar çünkü ışık görüntüsü ne enerji, ne veri, ne de net bir bilgi taşıyabilir. Tüm bunlara rağmen ışık hızını aşmayı başarmak, bu sıralamada yer almak için yeterli.  (Videonun ilk 1 dakikasında ışık görüntüsü Ay üzerinden örneklenmiş)
Kuantum Dolanıklığı  Albert Einstein’ın ‘ürkütücü’ olarak nitelendirdiği kuantum dolanıklık teorisi, birbiriyle eşleşmiş olan iki farklı parçacığın birbirine bağlı şekilde hareket etmesidir. Örneğin ilk olarak iki elektronu yan yana getirelim. Birbirlerini etkileyecek olan elektronlar, bir süre sonra uyumlu bir şekilde hareket etmeye başlayacaklardır. Bu noktadan sonra elektronlardan birisini bulunduğumuz konumun milyonlarca ışık yılı uzağına yerleştirelim ve eşleşmiş olan elektronu titreştirelim. Titreşen elektronun eşi, çok uzakta olmasına rağmen gerçekleşen titreşim hareketini anında fark edecektir ve titreşim hareketinin tam tersini uygulayacaktır. Eşi aşağı doğru yöneliyorsa yukarı, sağa doğru yöneliyorsa sola, ileri doğru yöneliyorsa arkaya doğru hareket eden elektron, ışık hızından çok daha hızlı (bazı bilim insanları 10.000 kat daha hızlı olduğundan bahsediyor) şeylerin olduğunun en büyük kanıtlarından birisidir.
Solucan Deliği Uzay-zaman bütünlüğündeki kısa yol olarak adlandırabileceğimiz solucan delikleri, ışığın milyonlarca senede katettiği yolu sadece birkaç saniyeye indirgeyebilir. Bu nedenle belki solucan deliğinin değil ama solucan deliğinden geçen her şeyin ışıktan daha hızlı olduğunu söyleyebiliriz.

Devamını Oku

Astrofizik

Einstein, Uzay, Zaman ve İzafiyet Teorisi

Yayınlandı

üzerinde

Yazan

Hayatımızın her evresinde bulunan hiçbir zaman için bize yetmeyen ve nasıl geçtiğini anlamadığımız zaman nedir? peki zaman? Herkese göre farklı mı işlemektedir. Ya da Evrensel boyutta zaman algısı bizim anlayabileceğimizin çok daha üstünde bir durum mudur? İşte Bugün sizlerle birlikte çıkacağımız yolculukta uzay ve zaman kavramını ele alacağız. Bizim için zaman dediğimiz olay Dünyamızın kendi etrafında ve Güneş etrafında dönmesiyle ortaya çıkmış bir olgudur. Ne yavaşlaması mümkündür ne de hızlanması. Sabit bir şekilde Tüm insanlar için Aynı hızla ilerlemeye devam etmektedir. Ancak zaman olgusuna baktığımızda beynimizin bizimle bir oyun oynadığı da düşünülmektedir.  Görelilik Nedir ?: Şimdi hepimizin aklına gelen soru ise beynimizin zamanla ilgili oyunu bir de nasıl oynayabildiğidir. İşte bu oyun ya da aldatma olayını en güzel açıklama ise Einstein‘ın görelilik kuramını en sade dille anlatmaya yarayan söz cevaplayacaktır diye düşünmekteyim. Bir adam güzel bir kızla oturup bir saat geçirdiğinde, bu süre kendisine bir dakika gibi gelir. Bir de bu adamı 1 dakika için sıcak bir fırının üstü oturursanız, bu süre ona bir saatten uzun gelecektir. İşte görelilik budur. Demek ki bulunduğumuz yer mekân ve duruma göre zaman değişiklik göstermektedir. Ancak bu değişiklik zamanın akıp gitmesindeki hızında değildir. Kişinin hissetmesi ile alakalı bir durumdur. O zaman dünya üzerinde bulunan bizlerin yaşamış olduğu durumlara göre zaman algısı değişiklik göstermekte ise Evrensel boyutta zaman çok daha büyük farklılıklar gösterecektir. İlk olarak isterseniz zamanı nasıl ölçtüm bize bir göz atalım. Dünya üzerinde yaşayan uygarlıklar ve medeniyetler zamanı ölçmenin birçok değişik yolunu bulmuşlardır. Dünyanın kendi ekseni ve güneş etrafındaki dönüşünü ölçerek kendimize göre bir zaman algısı ortaya çıkartmaktır. Dünyanın kendi ekseni etrafında dönüşünü 24’e bölerek saat kavramını saatleri 60’a bölerek dakikaları, dakikaları da 60’a bölerek saniyeleri hesaplayabilmekteyiz. Yılları ve ayları belirlemek için de Dünya’nın güneş etrafındaki dönüşünü baz almaktayız. Yani dünyamızın bulunduğu güneş sistemindeki hareketlerine göre zamanı anlayabiliyor ve hayatımızı buna göre yönlendirebiliriz. Dünyanın kendi ekseni etrafındaki dönüşünü yavaşlatmaya da hızlandırma şansımız yoktur.  O zaman dünyada bulunan herkes için zaman aynı hızla akmakta diyebilir miyiz? Ancak zaman üzerinde yapılan çalışmalar ve araştırmalar bizlere zamanın aynı hızda aktığını, ama hissetme olayının kişilere göre değişiklik gösterdiğini söylemektedir. Örnek vermek gerekirse; hepimiz çok iyi biliriz ki çocukken Sokağa çıktığımızda ve arkadaşlarımızla oyunlar oynadığımızda gün bitmek bilmezdi, ama şimdi öyle mi? Hayır zamana yetişemiyoruz. Gün yetmiyor. Bu konuda hemen aklınıza yapacak işlerimizin çoğaldığı ve sorumluluklarımızın arttığı gelebilir. Benim de aklıma gelen olay bu ama yapılan araştırmalar sonucunda ortaya atılan bir teori bunun yapılacak işler ile alakası olmadığını bizlere anlatmaktadır.  Ortaya atılan bu teori de zamanın akış hızının yaşımızın karekökü ile birlikte arttığını söylemektedir. Yani 10 yaşındayken zamanın akış hızı 1 dir. 20 yaşındayken zamanın akış hızı 1.14 dur. 60 yaşındayken zamanın akış hızı 2.44 dur. Yani 60 yaşındaki biri için 10 yaşındaki birine göre zaman yaklaşık iki buçuk kat daha hızlı artmaktadır. Burada aklıma gelen bir kısa bilgi sizlerle hemen paylaşmak istiyorum. Zamanı en iyi ve en doğru şekilde ölçen Sezyum atomunun titreşmesidir. Sezyum atomu saniyede yaklaşık olarak 9 milyar kere titreşmektedir. O zaman eğer insan hücreleri ve atomlar arasında bir bağ varsa ve hücrelerin yaşlanması sonucunda titreşimlerin de değişiklikler oluşuyorsa, yaşlanınca zamanın hızlı atması İle bağlantılı olabilir.  Einstein uzay ve zamanın birbirine bağlı olduğu uzay zaman kavramında bizlere ne anlatmak istemiştir. Einstein’ın bizlere anlatmak istediği kütle çekim etkisinin zamanı etki edebileceğidir. Yani Kütle çekimi zaman yavaşlatabilir ya da hızlandırabilir demiştir. Einstein’a göre Kütle çekimi ne kadar güçlüyse zaman o kadar yavaşlar ve bunun için en büyük örnekte kara deliklerdir. Şimdi bir karadelik düşünelim. Birde Uzay gemimiz var. Uzay gemimizle birlikte karadeliğin olay ufkuna yanaşarak çekimine kapılmadan etrafında döndüğünü hayal edelim. Ancak gemide bulunan bizlerin bir ikizi de dünyada bulunuyor olsun. Karadeliğin etrafında dönerken bizim için zaman çok yavaş akacaktır. Kalbimiz daha yavaş atacaktır. Hücrelerimiz bile daha yavaş yaşlanacaktır. Hatta metabolizmamız bile yavaşlayacaktır. Ancak bu durum bizler için hiçbir sorun yaratmayacak. Sanki her şey normalmiş gibi gemide hayatımızı sürdürüyor ve zaman normal bir şekilde atıyor diye hissedeceğiz. Kara deliğin etrafındaki dönüşünü tamamlayıp dünyaya geri döndüğümüzde dünyada bulunan ikizlerimizin, bizden çok daha fazla yaşlandığını fark ederiz. Bu yaşlanma farkı, bizim kara deliğin kütle çekiminde ne kadar kaldığımızda orantılı olarak artış gösterecektir. Ayrıca yanında bulunduğumuz karadeliğin kütle çekiminin gücü de zamanın akma hızında etkili olacaktır. Yani dünyada bulunan ikizlerimiz için zaman hızlı akarken bizim için çok daha yavaş atacaktır. Bu olay ile ilgili olarak ortaya atılan bir Paradoks vardır ve bu paradoksun adı da ikizler paradoksu dur. Ancak bu paradoksla ışık hızı ve zaman olgusu bizlere anlatılmaktadır.  Ali ile Ayşe iki kardeş aynı gün aynı saatte doğdular. İkisi de yaşamlarını dünyada sürdürüyorlar. Ama bir gün biz Ayşe’yi Bir Uzay aracına bindirip ışık hızının yüzde 90 hızında uzaya gönderelim. Ali de bizimle birlikte dünyada kalsın. Hayatına devam etsin. Işık hızının yüzde 90 hızında yolculuk yapan Ayşe 5 yıl sonra dünyaya geri döndüğünde, Ayşe’nin saati dünya saatinin sadece yüzde 44’ü hızında işlemiş olacaktır. Yani dünyada bulunan Ali için geçen her 100 saniye Ayşe için 44 saniye olarak geçecektir. Peki, Ayşe’yi ışık hızının yüzde 99’luk bir hızın da tekrar uzaya yollarsak; O zaman dünya saatinin sadece yüzde 14’ü hızında zaman işleyecektir. Bu da ne demektir? Dünyadaki 100 saniyeye uzaydaki Ayşe için 14 saniye olacaktır. Küçük bir hesapla ile, Ayşe bu hızla uzayda 7 yıl geçirdiğinde, dünyada bulunan Ali için 50 yıl geçmiş olur. Hızı biraz daha arttırıp ve ışık hızının yüzde 99,9 luk hızında bir yolculuk yaptırırsak, Ayşe’ye göre zaman dünya saatinin sadece yüzde 4,5’i hızında geçecektir. Yani dünyadaki 100 saniye Ayşe’ye 4,5 saniye olarak yansıyacaktır. Ayşe ışık hızının yüzde 99,9 luk hızında da uzayda 5 sene yolculuk yapıp dünyaya geldiğinde, kardeşi 110 yıl geçirmiş olacaktır. İşte ikizler paradoksu bizlere Işık hızı uzay ile zaman arasındaki ilişkiyi anlatmaktadır. Bu farkları bizler Evrensel boyutta anlayabilmekteyiz. Dünyamızda bu denli büyük farkları anlama şansımız yoktur. Ancak yere yakın bulunan yerlerde yerçekimi daha fazla olduğundan dolayı 1. katta yaşayan birine göre gökdelenin 200. katında yaşayana zaman çok daha hızlı akacaktır. Peki Bizler bir şekilde ışık hızında hareket etseydik ne olurdu bunu hiç düşündünüz mü? Işık hızı evrende bulunan tek değişmeyen sabit bir hızdır. Saniyede yaklaşık olarak 300.000 kilometre diyebiliriz.  Bu hızda sabit şekilde hareket etseydik zaman bizim için dururdu. Yani zaman olmazdı. Belki başka boyutlara geçerdik.  Bunun cevabını şu anda kimse bilmemektedir. Ancak burada ortaya konan değişik ve kafa karıştıran bir soru bulunmaktadır. Işık hızında hareket ederken zaman duruyorsa ve ışık hızından daha büyük hızlar varsa ve bizler ışık hızından daha yüksek hızlarla hareket edebilirsek o zaman, zamanda geriye mi gideceğiz? Yani Geçmişe Yolculuk Mu yapacağız? Maalesef bu sorunun cevabı bilinmemektedir. Ancak tokyonlara bakıldığında ve takyonların hızı ele alındığında, o zaman geçmişe yolculuk yapamayacağız ama çok hızlı bir şekilde milyonlarca Işık hızını aşıp başka galaksilere ulaşabilirsek, o zaman oradan geçmişi görüntüleme şansımız olabilir diye de düşünülmektedir. Bildiğiniz üzere Bize en yakın olan Galaxy Andromeda galaksisidir. Eğer oradan dünyayı izleyebilecek bir teknolojimiz olmuş olsaydı, dünyamızın 2 milyon yıl önceki halini görüyor olacaktık. İsterseniz şimdi İzafiyet teorisine bir göz atalım. İzafiyet Teorisi, özel görelilik ve genel görelilik olmak üzere ikiye ayrılmaktadır. Özel görelilik Kuramı 1905’te, genel görelilik kuramı ise 1916 yılında ortaya koymuştur. Peki, özel ve genel olanlarını birbirinden ayıran fark nedir? Özel görelilik kuramı, sabit hızla hareket eden olayları incelerken, genel görelilik kuramı, hızı değişerek hareket eden olayları incelemektedir. Bilim adamları Birçok araştırma yapmakta ve yeni atılımlara imza atmaktadırlar. Son zamanlarda ise ışık hızına ulaşmak adına birçok çalışma yapılmaktadır. Ancak ışık hızı evrende bulunan en yüksek hız olarak bilinmekte ve aşılması imkânsız olarak düşünülmektedir. Hatta bu konu ile ilgili herkes tarafından çok sorulan bir soru da bulunmaktadır.   Eğer bir gün ışık hızında gidebilecek bir arabamız olursa ve yaklaşık saatte 300.000 kilometre hızla giderken farlarını yakarsa ne olur? Sorusudur. Bu soruda kafa karıştıran olgu, ışık hızında giden bir arabanın farları yandığında ışığın öne doğru ilerleyeceği ve arabadan daha önce bulunacağı, bu nedenden dolayı da aşılmaz denen Işık hızından daha hızlı bir şekilde ilerleyeceği düşünülmektedir. Her ne kadar içinden çıkılmaz bir paradoks olarak gözükse de, özel görelilik kuramı, bu soruya çok basit bir cevap vermektedir. Görelilik kavramı ilk olarak 16 yüzyılda Galileo tarafından ortaya atılmıştır. Daha sonra Newton bu kuruma, hareket yasalarına göre ve uzay zamana göre açıklamaya çalışmıştır. Ancak 19. yüzyıla gelindiğinde, Newton fiziğinin bazı olayları açıklayamadığı gözlemlenmekteydi. Açıklanamayan bu olayların üzerine Albert Einstein özel görelilik kuramına geliştirmiştir. Özel görelilik kuramı sezgisel olarak algılayamadığımız olayların ancak deneylerle kanıtlanabilmesidir. Mesela otobanda saatte 100 kilometre hızla giden bir araç düşünelim ve hemen yanında, bir de saatte 20 kilometre hızla giden bir araç olsun. Saatte 20 kilometre hızla giden araçtan bakan biri, saatte 100 kilometre hızla giden aracı gördüğünde kendisinin hareket etmediğini hissedecektir ve diğer aracında saatte 80 kilometre hızla gittiğini varsayacaktır. Başka bir örnek verecek olursak, dünyamızın dönüş hızı saatte 16.744 kilometredir. Ama biz dünyayı duruyor gibi hissederiz. Yani sezgisel olarak bunu algılayamayız. Özel görelilik günlük yaşantımızda algılayamadığımız, zamanın göreli olduğunu, sezgisel olarak hissettiğimiz zamanın ise, mutlak olduğunu bizlere söyler. Ayrıca özel görelilik kuramı zaman mekân ve hareketlerin birbirinden bağımsız olmadığını, hatta hepsinin birbirine bağlı olduklarını ayrı ayrı düşünülmemesi gerektiğinden de bahsetmektedir. 1905 yılında Einstein tarafından ortaya atılan özel görelilik kuramının bizlere anlatmak istediklerinden bazı sana bakacak olursak;
Işık hızı limiti: Eğer bir cisim ışık hızına ulaşırsa kütlesi sonsuz olur. Ancak sonsuz kütlesi olan bir cismi ışık hızında tutabilmek için sonsuz bir enerjiye ihtiyaç duyulmaktadır. Bu yüzden dolayı kütleli cisimler asla ışık hızına ulaşamazlar. En iyimser şekilde düşünüldüğünde bile ancak ışık hızına yakın hızlara ulaşabilirler. Boşlukta ilerleyen ışığın hızı asla geçirmez. Işık hızı evrendeki son hız limitidir. Işıkta bir kütleye sahip olmadığından dolayı, ışık hızında yolculuk yapabilmektedir.  Uzay ve zaman: Uzay ve zamanın birbirinden farklı iki kavram gibi gözükse de birbirleri ile ilişkilidir. Zaman genişlemesi lorentz dönüşümü, durağın halde bulunan bir gözlemcinin hissettiği zaman, ışık hızına yakın hareket eden bir cismin içinde bulunan başka birine göre daha kısa görünür. Bu kısalma miktarı cismin yapmış olduğu hıza bağlıdır. Eğer ışık hızına varılırsa uzunluk dışarıdan gözlemleyen birine göre sıfır olarak görülecektir. Ama cismin içindeki kişiye bu normal gözükmektedir. Kütle artışı, ışık hızına yakın hızda hareket eden bir cismin kütlesi artar. Işık hızına ulaştığında kütle sonsuz olur. Dışarıdan gözlenen bu kütle artışı cismin içinde bulunan kişi için aynı kalacaktır. Yani kütlenin arttığını hissetmeyecektir.
E=mc2?: Bu denklemde E enerjiyi, M kütleye, C2 ise ışık hızının karesini temsil eder. Denkleme göre madde enerjiye, enerjide maddeye dönüşebilir. Ortaya atılan birçok öngörü bulunmaktadır. Ama bu sizlere bahsettiğim öngörüler, en önemlileridir. Yapılan araştırmalar ve deneyler sonrasında bu öngörülerin doğruluğu 1905 yılından günümüze kadar bize bir çok kez doğrulanmıştır. Mesela yapılan deneyler den birinde çok hassas atom saatleri taşıyan uçaklar değişik yönlere ve değişik yerlere değişik hızlarda yolculuk yapmışlar ve saatlerini duruma göre hızlandığı ya da yavaşladığı görülmüştür. Cern’de yapılan deneylerde, parçacık hızlandırıcılarındaki, hızlandırma işlemi sonrasında, kütlesi olan hiç bir cismin atom ya da elektron hızına çıkamadığı gözlemlenmiştir. Yani hız arttıkça Kütlesi artmış, istenilen hızlara ulaşamamıştır.  Güneşten dünyamıza, ışık hızının yüzde 99.5’i kadar bir hızla gelen nötrinoların ömürlerinin dünyada bulunan diğer nötrinolardan çok daha uzun oldu da gözlemlenmiştir.  Biraz önce sormuş olduğumuz sorunun cevabına bakacak olursak; Işık hızında hareket eden arabamız, sabit bir hızla hareket etmektedir ve arabanın farları açıldığında ne olacağı, aracın içindeki kişiye ve dışarıdan gözlemleyen kişiye göre değişiklik gösterecektir. Yani iki farklı sonuç elde edeceğiz demektir. Işık hızında hareket eden arabanın içindeki kişiye göre cevaplayacak olursak; Işık hızında, yani saatte yaklaşık 300000 kilometre hızla seyreden araba sabit bir hızla bittiğinden dolayı farları açacak olursak bile sadece önümüzü aydınlandığını görürüz. Dışarıdan gözlemleyen kişinin önünden ışık hızında geçen araba eğer farlarını yakacak ve öyle geçecek olursa, farların arabanın önünü aydınlatmadığını görürüz. Çünkü farlardan çıkan ışık araç ile aynı hızla gidiyor olacaktır. Dolayısıyla farlardan çıkan ışık dışarıdan gözlemleyen kişiye göre asla arabanın önünde gitmeyecektir. İzafiyet teorisinin 2. ayarla baktığımızda genel görelilik kuramını görmekteyiz. Ancak bugün sizlere genel görelilik kavramı hakkında çok kısa bir bilgi vereceğim. Genel görelilik kuramı, özel görelilik kuramından farklı olarak hızı değişerek hareket eden olaylarla ilgilenir. Ayrıca karadeliklere ve genişleyen evren modellerini de bizlere açıklayan önemli bir teoridir. Genel Görelilik, Newton’un Evrensel kütle çekim yasası ile özel göreliliğin genişletilerek, kütle çekim uzay-zaman veya uzay ya da uzay ve zamandaki etkilerinden bahsetmektedir.  Ayrıca süpernova patlamaları ile oluşan Kara deliklerin nasıl oluştuğu da genel Görelilik prensiplerine dayanmaktadır. Genel Görelilik Kuramı kütle çekiminin zamanı olan etkisine de çözüm getirmektedir. Uzayın bir çarşaf gibi gergin olduğunu düşünelim ve bu çarşafın üzerine 2 adet portakal koyalım. Bu koyduğumuz 2 portakalın bir şekilde birbirine yaklaştığını gözlemleyeceğiz. Ancak bu iki portakalın birbirine yaklaşmalarındaki neden birbirlerini uyguladıkları kütle çekim kuvveti değildir. Birbirlerine yaklaşmalarındaki neden, çarşafı bükmelerinden kaynaklanmaktadır. İşte bu şekilde uzayda bulunan iki gök cismi de birbirlerine uzay ve zamanı bükerek yaklaşırlar. Hatta bu uzay bükülmesinden dolayı birbirlerine yatay doğru da giden ışıklarda bükerler. Bu olay bizlere yerçekiminin bir kuvvet olmadığını ortaya koyar. Newton’in kuvveti esas alan kütle çekim kuramı da burada geçerliliğini kaybetmiş olur. Evrende oldukça fazla gök cismi bulunmaktadır. Ve bu cisimlerin her biri üzerinde bulundukları uzayı bükerek birbirlerini çekmekte ve kendi eksenleri etrafında dönerken uzayı da, zamanı da bükmektedirler. Hatta Bilim adamları bu teoriden yola çıkarak, yapmış oldukları araştırmalar sonucunda, dünyamızın bir yıl içerisinde 2 metrelik sapma gerçekleştirdiğini de tespit etmişlerdir. Genel Görelilik Kuramı bu şekilde kısaca anlatılacak bir teori değildir. Ancak hazırlamış olduğumuz bu makalede, genel görelilik kuramı konusunda sizlere ufak bir giriş yaparak, ufak bir bilgi vermeye çalıştık.
Kaynak: https://www.space.com/17661-theory-general-relativity.html , https://www.space.com/36273-theory-special-relativity.html

Devamını Oku

Fizik

Büyük Patlamadan Öncesinin Var Olduğuna Dair Yeni Bir Teori Ortaya Atıldı

Yayınlandı

üzerinde

Genel göreliliğin basit bir yorumuna göre, Büyük Patlama ‘her şeyin’ başlangıcı değildi. Bir araştırma ekibi, Einstein’ın ünlü denklemini kullanarak evrenin saatini geri aldı. Fizikçiler son dönemlerde Büyük Patlamanın başlangıç olmadığına inanıyor. Bunu anlamak için biraz geriye gitmeliyiz. 90 yıl kadar önce Georges Lemaître adlı bir Belçikalı gökbilimci, ışığın uzak galaksilerde değişmesine bağlı olarak evrenin genişlediğini iddia etti. Evren gittikçe büyüyorsa bu geçmişte daha küçük olduğu anlamını taşıyor. Saati geri sarmaya devam ettiğimizde- yaklaşık 13,8 milyar yıl – alanın tekillik olarak da bilinen inanılmaz derecede küçük bir hacimle sınırlandırılması gereken bir noktaya geliriz.

Stephen Hawking’in bir konuşmasında açıkladığı üzere zamanın başlangıcında Büyük Patlama olmuş olsaydı, evrendeki tüm maddeler üst üste binmiş olurdu. Bu alanda sonsuz bir yoğunluk meydana gelirdi. Fizikçilerin boş alandaki şeyleri tanımlamak için kullandıkları birkaç model vardır. Einstein’ın genel göreliliği bunlardan birdir – evrenin altında yatan kumaşın geometrisi ile ilgili olan yerçekimini tanımlar. Hawking ve matematikçi Roger Penrose tarafından önerilen teoremler, genel görelilik denklemlerinin sonsuz kısıtlı bir ölçekte (tekillik içinde olduğu gibi) olan çözümlerinin eksik olduğunu iddia ediyor. Çoğu zaman fizik tekilliği bozar, bu da hala mantıklı olan fizikten ne kadar küçük bir şey çıkarabileceğimize dair spekülasyonların bir karışımına yol açar.

Hawking yakın zamanda, “Güney Kutbu’nun güneyinde hiçbir şey yok, bu yüzden Büyük Patlama’dan önce etrafta hiçbir şey yoktu” diyeren Büyük Patlamayı Güney Kutbuna benzetmişti. Ancak diğer fizikçiler BigBang’in ötesinde bir şey olduğunu savundular. Bazıları diğer tarafta, zamanın geriye doğru gittiği bir ayna Evren olduğunu söylüyor.Diğerleri geri tepen bir evren fikrinde birleşiyor. Biraz farklı bir yaklaşım benimseyen fizikçiler Tim A. Koslowski, FlavioMercati ve David Sloan, bozulmanın genel görelilik tarafından tanımlandığı gibi belirli bir zamandaki özelliklerin bir çelişkiden kaynaklandığına işaret ederek yeni bir model geliştirdiler. Tekillik varsayımından geri adım atan araştırmacılar, uzay-zamanın haritasını kendi içindeki ‘şeylerden’ ayırarak mevcut alanın küçülme modelini yeniden yorumladılar. Oxford Üniversitesi’nden bir fizikçi olan Sloan , “Tüm sorunlu terimler, Evrenin içeriden nasıl göründüğünü belirleyen büyüklüklerin davranışını yerine getirirken alakasız kalıyor ” dedi.

Bunun esasen kattığı şey, fiziğin yeniden doğanlar üzerine etki ettiği aşamada bozulmadan kaldığı BigBang’in bir açıklamasıdır. Ekip bunu tekillikten ziyade Janus Noktası olarak tanımlıyor. Evreni oluşturan nesnelerin göreceli konumları ve ölçekleri, zamanı geri sardıkça, iki boyutlu bir yassı haline gelir. Janus Noktasından geçmekle, sadece arkaya doğru olacak şekilde o yassılık yeniden 3D’ye döner. Bunun fizik terimleri olmadan ne anlama geldiğini söylemek zor, ancak araştırmacılar parçacık fiziğinde simetri üzerinde derin etkileri olabileceğine, hatta belki de en çok antimaddere dayalı bir Evren üretebileceğine inanıyor. Ters çevrilmiş bir evren fikri eski olsa da tekillik sorunu etrafında bu şekilde çalışma yaklaşımı yenidir. Sloan, ‘Yeni ilkeler getirmiyoruz ve Einstein’ın genel görelilik teorisinde hiçbir değişiklik yapmıyoruz – yalnızca nesnelere uygulanan yorumlamayı değiştiriyoruz’ dedi.
Kaynak: https://www.sciencealert.com/mind-bending-study-suggests-time-did-actually-exist-before-the-big-bang

Devamını Oku

Öne Çıkanlar